
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 17.5 

Slide 17.5.1 
Now, let's look at one example in which changing the 
evaluation model allows us to explore a very different kind of 
computational problem. Our goal is to show how a small 
change in the evaluator, basically our lazy evaluator, can let us 
have a very different way of thinking about programs and 
programming. 
Imagine that I want to simulate the motion of an object in a 
complex environment. A simple case might be a tennis ball that 
I throw against a set of walls. I would like to simulate how the 
ball would bounce against those obstacles and where it might 
end up. In our earlier approach, we might have chosen to model 
this using an object oriented system, which seems like a natural 
way of breaking this problem up into pieces. Under that view, we would have a different object to represent each 
different structure in our simulation world. For example, we might have an object that represented the ball, with 
some internal state that captured the properties of the ball. Similarly each wall would be an object, perhaps with 
different characteristics representing how objects bounce off them. And we might have a clock to synchronize 
interactions between the objects, leading to an object centered system very similar to what we saw in earlier 

lectures. In this way, each synchronization step would cause the objects to update their state, including detecting 
when, for example, two objects have collided so that the physics captured in each object would then govern 
changes in the state of the objects. 
The thing to notice is that while this is a natural way of breaking up the system into units, the state of the 
simulation is basically captured in an instantaneous way. At any instant, we can determine the state of the overall 
system by the values of the state variables of each object. But we don't have a lot of information about how the 
system has been evolving. 
Said a different way, by breaking up this system into units of this form, we are naturally focusing on the discrete 
objects within the system, not on the behavior of the system. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 17.5.2 
There is a very different way of thinking about such systems, 
however. Rather than having structures that capture state 
explicitly, I could think about systems in which the state 
information is only there in an implicit way. In my example of a 
tennis ball being thrown against a set of walls, imagine that 
while doing that action, I also include a set of cameras placed 
around the edges of the room. These cameras might record the 
movement of the ball, and thus can capture information about 
the state of the ball. In particular, imagine that this is happening 
in a continuous fashion. That is, there is a constant stream of 
information being spewed out that represents the x and y 
position (for example) of the ball as it moves around the room. 

Slide 17.5.3 
Under this view, my basic units now become the time series of 
values of the different variables that represent my system. In the 
earlier version, my basic units were the objects themselves: the 
ball, the walls, and the clock. 
Now, I have changed my viewpoint. I have pulled out the state 
variables, and declared that my basic units are now the stream 
(or history) of values associated with each state variable. To 
capture the state of the system at any point, I simply take the 
values of all of those variables across the same point in time. 
But my units that I want to focus on are the actual stream of 
values, the time history of values associated with each state 
variable in my system. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 17.5.4 
A key question, then, is how can I efficiently capture this kind 
of information? An obvious approach would be to just represent 
the history of values as a list. We could just glue new values of 
each variable onto the front of a list representing each such 
variable. While that is an appropriate way of conceptualizing 
the idea of capturing histories of values, we will see that when 
we move to complex systems, this becomes difficult to do in an 
efficient way. We would like to capture these histories with a 
minimum of computational effort, and for that we are going to 
return to the ideas we saw in the last lecture. 

Slide 17.5.5 
Now we just saw how to convert our standard, or applicative 
order, evaluator, into a normal order, or lazy, evaluator. I want 
to take that idea, and use it to change the way we think about 
programming, by showing how changing our viewpoint on 
evaluation coupled with this idea of capturing objects by their 
streams of values, gives us a very different way of 
programming. 
The key ideas we are going to use are the notion of deferring 
evaluation of subexpressions until only when needed; and the 
idea of avoiding re-evaluation of the same subexpression, by 
memoizing it. 

Slide 17.5.6 
So we saw an evaluator in which the programmer could declare, 
when building a procedure, how to treat the different 
parameters. In this little example, a and c are normal 

variables, meaning that the expressions associated with them 
will be fully evaluated before we apply the procedure. Variable 
b we treat as lazy, meaning that we do not evaluate the 
associated expression at application but ather wait until the 
value is actually required within the body of the procedure (e.g. 
when a primitive procedure is applied to this expression). In 
this case, however, once the value associated with the 
expression has been used in that primitive application, it is 

discarded. Thus if the same expression is used somewhere else in the body, we will redo the work to compute it 
when it's value is needed. Variable d is also to be treated as lazy, but in this case, once we have obtained the actual 

value for the variable, we keep it around, and just use that value if any other part of the procedure body uses the 
same expression. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 17.5.7 
So how could we use this idea in our context? We could create 
a new data abstraction, called a stream. Here is one version of 
this abstraction. It has a constructor, cons-stream and 

two selectors, stream-car and stream-cdr. You 

can see by their names, that we expect them to behave a lot like 
lists, with one exception. The exception is that we want the 
second part of the stream to be lazy, or better yet memoized and 
lazy. This means that when I make a stream, I want to defer 
getting the value of the second part of the stream until I am 
actually required to. 
Here we have represented this in a message passing system. We 
could also have done this using cons directly, although we have 
to be careful about ensuring that cons does not force the evaluation of the cdr part of the pairing until asked to 

by some other primitive operation. 

Slide 17.5.8 
A key change is that now I have a way of gluing together a 
sequence of values in which only the first value is explicitly 
evaluated when I do the construction of the data object. The 
second part of this structure is lazy: it is a promise to get the 
value when asked for, but I don't do the work of computing the 
value at construction time. 
Now, what does this do to our thinking about building 
sequences of values? 

Slide 17.5.9 
A stream object thus looks a lot like a pair, except that the 
cdr part of the stream is lazy. It is not evaluated until some 

procedure actually needs its value, but once we have worked 
out its value, we keep track of it for later reference. Think about 
what happens now. For example, if I ask x to have the value of 

a cons-stream of 99 and (/ 1 0) what will 

happen? 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 17.5.10 
If I did this just using a normal cons, I would get an error, 

because cons would evaluate each of its arguments before 

constructing the pair, causing the division by zero to take place. 
In the case of cons-stream, we get a different behavior. 

Cons-stream will create an object with the value of the 

first argument as the first piece (99), but the second part is 
simply stored as a promise to compute a value when needed, 
and these two things are glued together. As a consequence, x is 

safely defined, and I get the first part of the stream without 
problem. It is only when I try to access the second part, using 
stream-cdr, that the evaluation of the deferred promise 

will take place, and I will see the error due to division by zero. 
Thus, we see there is a difference between a stream object as a pair and a standard pair, in that the second part of a 
stream object is not evaluated until required. We are now going to build on that idea to see how we can create very 
different data structures and very different ways of thinking about computation. 

Slide 17.5.11 
This may seem like a very straightforward change. What I have 
in essence done is say: here is an alternative way of gluing to 
things together into pairs, specifically gluing together the value 
of the first thing with a promise to get the value of the second 
thing. It doesn't sound like a lot, but in fact it has a fundamental 
impact on how I can think about computation. 
In particular, I can now decouple the computation of values 
from the description of those values, or said another way, I 
can separate the order of events that occur inside of the 
computer from the apparent order of events as captured in 
the procedure description. Let's look at an example. 

Slide 17.5.12 
Suppose I want to find the value of the 100th prime. Here is the 
standard way of doing that, using lists. Enumerate-
interval could generate a list of all the integers between 

1 and 100,000,000. I could then filter that list, using a predicate 
that checks for primes (the details of the predicate are not 
important here). Given that new list of primes, I could then 
walk down the list to get the 100th element. 
Notice what has happened here. I first had to generate a list 
100,000,000 elements long, because I am not certain how many 
integers I will have to check before I find my answer. Thus I 
have done a lot of computation and I have chewed up a lot of 

memory creating a huge data structure. Filter then runs down that list and generates a new list, not quite as 

long as the original, but still a very large list, and involving a lot of computation. Finally, list-ref just walks 

down this new list, finds the 100th element, keeps it, and throws everything else away! 
Using standard methods, I have to do all of the computation to get the value of an argument, before I can move on 
to the next stage of the computation. Thus, I have to generate an entire data structure before I can move on to 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

computations involving that data structure, even though much of the data structure may be irrelevant to my 
computation. In this example, that computation is wasted. 

Slide 17.5.13 
Suppose instead we change viewpoint. Rather than creating an 
entire list of integers before starting to look for primes, let's 
create a structure with the first integer that I need, and a 
promise to generate the rest of the integers when necessary. 
Rather than creating enumerate-interval as a very 

long list, I can use streams. Because of the lazy nature of 
streams, when I evaluate (stream-interval a
b) I will get a data structure with the value of a as the first 

piece, and a promise to generate the rest of the interval from 
(+ a 1) to b, when required. 

I can easily create a stream-filter that behaves like a 

filter on lists, but uses the constructor and selectors for streams instead of for pairs. 
With that, notice what happens. Here, when I evaluate the last expression, stream-interval will 

generate a structure with the value 1 and a promise to generate the interval from 2 to 100,000,000. That can 

immediately be passed to stream-filter which will check to see if the first element is prime. Since it is 

not in this case, we will throw that value away, and ask for the next element in the stream. Remember that 
stream-filter will just walk down the stream the same way filter walked down a list. This will 

cause the computation to go back to stream-interval and ask it to generate the rest of its stream, the 

deferred second part. This will in turn ask cons-stream to generate the value 2 and another promise to 

generate the rest of the stream from here. 
As a consequence, these two procedures will work in synchrony: stream-interval generating the next 

element in the stream, then passing that value plus a promise to stream-filter which will keep checking 

the value, and asking stream-interval for the next element until it finds one it likes. Thus, we will only 

generate as many elements in the stream as we need until stream-ref is able to extract the 100th prime. 

Slide 17.5.14 
Note what this allows us to do. We can now think about the 
processing as if the entire set of values was available. We are 
thinking about how to deal with streams as if the entire 
sequence of values were there. But in fact, when we go to the 
computation, the laziness allows us to separate the order of 
events insides of the computer from the apparent order of 
events in the description of the process. Thus we get the 
efficiency of only computing what we need, while allowing us 
to think about things as if the entire sequence of values was 
available. To go back to our motivating example, we can build 
simulations in which we think about having the entire sequence 

of position values as if they were available, but we don't have to do all the computation needed to generate them in 
order to run the simulation. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 17.5.15 
To see how lazy evaluation gives us this behavior, let's look in a 
little more detail at this method. Here is a standard stream 
procedure, which looks exactly like our filter procedure 

for lists, the only difference is that we use stream abstractions 
in place of pair abstractions. But how does the lazy evaluation 
buried inside of cons-stream allow this procedure that 

looks just like a normal list procedure to have this different 
behavior, decoupling the order of evaluation within the machine 
from the apparent order described by the procedure? 

Slide 17.5.16 
Indeed, a standard question might be "Why doesn't stream-filter 
end up generating all of the elements of the stream at once?" 
The answer is here. When we apply this procedure to a stream, 
it will recursively test each element in the stream, until it finds 
one that satisfies the predicate. At that stage, note what 
happens. We generate a stream with that element as the first 
element, and with a lazy (or delayed) promise to filter the rest 
of the stream when needed. Thus, we generate the first element 
of the new stream, and a lazy promise, not the entire stream. 

Slide 17.5.17 
Let's check it out on our simple example. Suppose we filter the 
stream of integers from 1 to 100,000,000, using the predicate 
prime?. Let's follow this computation, noting how lazy 

evaluation controls the order of evaluation of the parts of the 
data structure. 

Slide 17.5.18 
Since stream-filter is just a standard procedure, we 

need to get the values of its arguments. Prime? will simply 

point to some procedure. (Stream-interval 1
100000000) needs to be evaluated, but we know that 

stream-interval is defined in terms of cons-
stream. So this returns one of these stream objects, which 

has the value of the first element, 1, already available, but 
simply has a promise (shown within that squiggly line) to get 
the value of the next argument, which is the stream interval 
from 2 to 100,000,000. At this stage, all that has been explicitly 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

computed is the first value. Everything else is just sitting around as a promise to do some work later. 

Slide 17.5.19 
Having evaluated the two arguments to stream-filter 
we can now apply that procedure, i.e. evaluate its body. What 
does that do? It applies the predicate (the first argument) to the 
first value of the stream (the second argument). Since in this 
case 1 is not prime, stream-filter will return the 

value of the second clause of its if expression. This is a 

recursive call to stream-filter with the same 

predicate but now with the stream-cdr of the second 

argument. This means we should now force that promise, 
getting stream-interval from 2 to 100,000,000. 

Slide 17.5.20 
Here is where a potential confusion can arise. It might seem 
like evaluating the stream-cdr of this stream should 

cause all the remaining elements of the stream, everything from 
2 to 100,000,000, to be evaluated. But remember that 
stream-interval says to do a cons-stream 
of the first argument onto a promise to get the rest of the values. 
So in fact it returns another stream object, with the next element 
in the sequence and another promise to generate the remaining 
elements. That is what will be supplied to stream-
filter. 

Slide 17.5.21 
So now stream-filter can evaluate its body, testing 

with its predicate to see if the first element of this stream is a 
prime. It is, so it returns a cons-stream of the first 

element of the input stream, which is a 2, and a promise, and 
here the promise is to do a stream-filter on the 

remaining things. And notice what this stream-filter 
is. It is a promise to filter using prime? on the stream­
cdr of the object we started with. 

Thus we now have two delayed promises. We have a promise 
to do the filter, and inside of it is a promise to generate the rest 
of the initial stream. Thus we can see that we will only pull out values from the stream as we need them. If we ask 
for the next element in this stream, we would then force the evaluation of the stream-filter expression, 

which would force the evaluation of the stream-interval expression. 


By hiding the lazy evaluation within the constructor, then building our procedures on top of that abstraction, we 

can easily enable the separation of the actual order of computation from the apparent order of computation. 




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 17.5.22 
Now we see that if we create procedures that manipulate these 
stream objects, this new data structure, we never have to worry 
about how long the data structure actually is. We only get the 
next element in order as we ask for it. This raises an interesting 
question. 
If we don't really care about how long the rest of the structure 
is, how long a structure could we make? The answer is: 
infinitely long! Actually, that is a slight mis-speaking, let's just 
say indefinitely long. We can now create data structures with 
arbitrary length that act as if they had infinite length, and this 
leads to some very interesting behavior in terms of how we 
think about processes. Let's look at an example. 

Slide 17.5.23 
Let's give the name ones to the structure we get by cons-
streaming the integer 1 onto ones itself. That sounds a 

bit weird. Note that if we ask for, say, the second element in 
this stream, we get out a 1. Why is this happening? 

Slide 17.5.24 
Well defining it this way says that the name ones refers to or 

points to a structure created by cons-streaming the 

integer 1 onto a promise to get the value of the name ones 
when asked for it. And that says that only when we ask for the 
stream-cdr of this object will we evaluate this name, 

ones, which will simply point back to the binding we created 

for that name as part of the definition. As a consequence, this 
structure represents a very odd thing ... 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 17.5.25 
... and infinite stream of 1's. No matter how many times I ask 
for the next element of this sequence, I will always get a 1. 
Thus I have a structure that I can conceptualize as representing 
an infinite set of things. Whenever I ask for some element in 
this sequence, it will always provide it to me, for any such 
element. 

Slide 17.5.26 
This may still seem odd, so let's think about the comparison to 
the standard evaluation model. Let's suppose that I tried to do 
this using cons in place of cons-stream. In this case, 

I get an error, because cons will evaluate both its arguments 

before constructing the data structure. Clearly I do not yet have 
a value for ones, so I can't glue it together with 1. With the 

lazy evaluation buried inside of streams, I can hold off on 
getting the value of this variable until I have completed the 
structure, which means the name ones will be bound to 

something when I go to get its value. Thus lazy evaluation 
provides the means necessary to enable creation of infinite data structures. 

Slide 17.5.27 
So what does this buy us? Well, this way of thinking about 
infinite data structures let's us think about creating procedures 
that operate as if the entire data structure were available to us. 
Thus procedures that typically apply to lists can be turned into 
procedures that handle infinite streams. Here is a procedure that 
adds together two streams, using the stream data abstraction. 
This should take two infinite streams as input and create an 
output stream in which the first element is computed by adding 
together the first elements of the input streams, and is glued 
onto a promise to add the remaining streams together when 
demanded. 
Using this idea we can create an infinite data structure of all the 
integers. We simply cons-stream the first integer, which is 1, onto a promise to add together the stream of 

ones and the stream of integers. Let's check this out, since it seems a bit odd. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 17.5.28 
So what does ints or integers look like? Well we know that 

the first element will be a 1, because we cons-streamed 

that onto a promise to get the rest of the integers. Okay, 
suppose we know ask for the second element of this stream... 

Slide 17.5.29 
... well the second element was a promise, a promise (because 
of the construction using lazy evaluation) to add together the 
stream of ones and the stream of ints. To get the second 

element we now need to evaluate that promise. 
Notice that at this stage, both ones and ints are available, 

that is, have been bound to values in the environment. Each is a 
stream with an evaluated first element and a promise. And since 
the first elements are available, add-streams can thus 

add together the first elements of the two streams, and glue the 
sum together with a promise to add the remaining streams. 

Slide 17.5.30 
If we were to ask for the third element of ints we would 

then force this new promise. We would evaluate a promise to 
add together two streams: a promise to get the next element of 
ones and a promise to get the next element of ints. In this 

way, we can walk our way down ints. Whenever we ask for 

the next element in the sequence, add-streams will 

"tug" on the two input streams to generate the next element in 
each, add them, and generate a new promise to create the 
remainder of the stream. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 17.5.31 
Having the ability to create these infinite data structures, such 
as the infinite stream of ones, or the infinite stream of integers, 
let's us change our way of conceptualizing processes. In 
particular, remember the sieve that we saw many lectures ago. 
The Sieve of Erastosthenes said that to find all the primes, start 
with the integers beginning at 2, and do the following process. 
Take the next integer and include it as a prime. Then remove 
from the remaining set all integers that are divisible by this 
number. This creates a new set of integers. Now take the next 
one, include it as a prime, remove any elements in the rest of 
the sequence that are divisible by this element, and continue. 
Remember that when we did this using lists, we had to create a 
list of integers from 1 to some point, and then execute this process to get the first prime, plus generate a new list of 
all the remaining elements not divisible by 2, and so on. At each step, we had to generate a big list of values, only 
to throw much of it away. With streams, we can rethink this process. 

Slide 17.5.32 
The idea of infinite data structures let's me create a sieve that is 
in fact much cleaner than the list version! As we said, in the list 
version, I would have to generate the entire list of integers, then 
filter that to generate another huge list, and so on. 
On the other hand, with infinite data structures, I can generate 
the elements of the lists only as needed. Notice how I can do 
this. I can create a sieve that says: given an input stream, 
generate an output stream the first element of which will be the 
first element of the input stream. The rest of the stream will be 
a promise: a promise to take the rest of the input stream, filter it 
to remove anything divisible by the first element of the input 

stream, and then taking the sieve of that! That is nice, 

because that sieve will then, when asked to be evaluated, will generate the first element of that filtered stream, plus 
a promise to sieve again. This means that I will only pull out those elements from this sieve that I need, on demand. 
I can conceptualize the computation as if the entire sequence of elements is available, but only do the computation 
incrementally as needed. 
Thus, I can define the primes as shown, and this structure will, when asked, compute as many primes as you 
request. 

Slide 17.5.33 
Notice, by the way, that this sieve definition does not include a 
base case! There is not test for the end of the input stream. But 
that is okay, because the input streams are infinite and we don't 
have to worry about reaching the end. The computation will 
simply keep generating more and more promises to get future 
elements as needed. Thus there is no base case, just the 
construction of the stream, element by element. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 17.5.34 
In fact this idea of thinking about these stream structures as 
infinite sequences of things that are generated as needed relates 
very nicely to a way of thinking about programming that is 
different than what we have seen so far. In fact, stream 
programming looks a lot like traditional signal processing. And 
what does that mean? 

Slide 17.5.35 
If we were to think about processing an audio signal, for 
example, the standard approach would be to consider some 
input signal x as a sequence of values. Then we would generate 

an output signal y by taking x, delaying that signal by some 

small amount, amplifying it by some process, then adding that 
value back into the input signal. This is a standard feedback 
loop, in which we get an output signal by processing some 
input signal. Using streams we can capture this idea of signal 
processing very cleanly. 

Slide 17.5.36 
So we can capture this idea of a feedback loop very nicely in 
streams. If x is our input stream, we can generate an output 

stream y by the following. The first element of x will just 

become the first element of y. To get the next element of y we 

will use stream-cdr of x to get the second element of x 
(this is equivalent to delaying the stream), map that element 
through a procedure that amplifies the values, and adds that 
value to the value of x we just computed. This generates an 

infinite stream of output values based on an infinite stream of 
input values. Why would we like to have this process? It leads 

to a very common example of a feedback loop. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 17.5.37 
In fact exactly that idea of a feedback loop can be used to build 
an integrator. Suppose we had an integrand represented as a 
stream of values, that is, the height of a function at a sequence 
of points, thus tracing out a curve. We want to get the area 
under that curve, by integration. We could certainly generate a 
stream that corresponds to the sample values of the integrand. 
We start with some initial value (probably zero). To get the 
next value, that is the area under the curve to this point, we take 
the area computed so far (that is the value of the output stream), 
and add to it the next value of the input stream, multiplied by 
the spacing between the sample points (i.e. the area of the 
rectangle with width dx and height the value of the function, 

which is the approximation to the area of this section of the curve). Thus we can add up the area of the curve 
incrementally, generating the area obtained by adding in the next point to the area computed so far, all done 
incrementally on demand. 
For example, we could use this to generate the integral of the stream of ones... 

Slide 17.5.38 
... if we take the integral of the stream of ones (i.e. the function 
with constant value 1), with a spacing of, say, 2, we get the 
following behavior. The first element of the returned stream is 
just the initial value, 0. 

Slide 17.5.39 
The next value in this integral stream is given by scaling the 
first element of the input stream and adding it to what we have 
added up so far. In terms of streams, we get the first value of 
ones, multiply it by two, and add it to the first of the integral, 

which we just computed. This results in the new value, 2, plus a 
promise to compute the next value in the sequence when 
needed. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 17.5.40 
If we ask add-streams to evaluate its next element, it 

will take the next element of the input (ones), scale it, and add it 
to the latest value of the output stream, and return that together 
with another promise for the next stage of the computation. 

Slide 17.5.41 
Key points are: having this idea of lazy evaluation supports the 
creation of structures that provide promises to create additional 
elements in a sequence when needed; and that those structures 
allow us conceptualize processes as if the entire sequence was 
available, focusing on the processing to be executed on the 
sequence, but have the actual evaluation occur just as needed. 


