6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

6.001 Notes: Section 15.1

Slide 15.1.1

Our goal over the next few lectures is to build an interpreter,
which in a very basic sense is the ultimate in programming,
since doing so will allow us to define our language.

This is a somewhat surprising statement. But, in fact, as we will
see through these lectures, it really is correct. The reason it is

correct is the following:

Every expression we write in our language has a meaning
associated with it. Deducing the meaning associated with an
expression is the process of evaluation. And therefore, if we
can define the program that executes that deduction for us, our
definition of that program (i.e. our definition of the interpreter)

Why do we need an interpreter?

4 1114

provides for us the exact specification of what's legal in our

language and how to deduce meanings of expressions within our language.

Our goal is to work through this understanding in stages. We will explore a series of examples, initially some very
simple examples, but culminating in a full-scale Scheme evaluator. We are going work our way up to this, letting
you see how to add the different pieces into an interpreter.

Before you proceed, however, there is a code handout that goes with this lecture. | suggest that you stop, go back to
the web page, and print out a copy of the code to have next to you as we go through the lecture.

Why do we need an interpreter?

* Abstractions let us bury details and focus on use of
modules to solve large systems

04

Slide 15.1.2

First, let's set the stage for why we want to do this, why do we
want to build an interpreter? Why do we need an interpreter?
Think about what we have seen so far in this course. We have
spent a lot of time talking about, and using, the ideas of
abstraction, both procedural and data. We know that this is a
powerful idea, as it lets us bury details, and it certainly supports
the expression of ideas at an appropriate level. Said another
way, we can think about what we want to do and separate that
from the details of how to actually make it happen.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 15.1.3
But eventually, we need a process for unwinding all of those Why do we need an interpreter?
abstractions, to get the value that corresponds to an expression’s | - abstractions let us bury details and focus on use of
meaning. That means we need to implement semantics of MRS T 2o et
interpreting eXDTESSionS. » Need to unwind abstractions at execution time to deduce
meaning
‘4 34
Why do we need an interpreter? S“d_e 15.1.4 i
_ : Notice the words | used. | said, "we need a process for
» Abstractions let us bury details and focus on use of R . . "
modules to solve large systems unwinding those abstractions”. If we can have such a process,

Heetllamrsiiefudnseianfei s then we should be able to describe it in a procedure: that is our
meaning language for describing processes.

In fact, you have already seen a version of this description, just
not as a procedure. What was the description? ... the
environment model!

If you think about it, that makes sense. The environment model
just described the process for how to determine a meaning
associated with an expression, which in turn just unwrapped the
abstractions down to the primitive operations. Today, we want
to talk about how to actually build an evaluator as a procedure

» Have seen such a process — Environment Model

* Now want to describe that process as a procedure

rather than as that abstract environment model.

Slide 15.1.5 Stages of an interpreter

First, what are the stages of an interpreter? For the kind of

languages we are considering, Scheme or Lisp like languages,

typically there are five stages. There is a lexical analyzer, a
parser, an evaluator that typically works hand-in-hand with an

environment, and there is a printer.

Let's look at what goes on in each of these at a high level,

before we build them.
Envircnment

4 54

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Stages of an interpreter |input to each stage

Lexical analyzer

Evaluator

Envirconment

Printer

| I

614

Slide 15.1.7

The initial input is a string of characters, which represents the
typewritten version of the expression we want to evaluate. This
is exactly the thing that we would type in at a terminal if we
wanted to have an expression evaluated. So the initial input is a

string of characters.

Stages of an interpreter [input to each stage

Lexical analyzer "(average 4 {(+ 5 5))"

[[eemese] [4]
HEEDD

Evaluator

Envircnment

Printer

a4

Slide 15.1.9

The second stage then parses those words into a structure that
we can use for evaluation. In particular, we convert the linear
sequence of words into a tree structure. We are using pairs here
for convenience but that is not required. We could use any other

representation of trees as well.

As we do this, we are going convert the self-evaluating
expressions into their internal values. So notice the form we get
for the next stage: it's a tree structure, and hanging off of the
leaves of the tree are numbers, symbols, or other objects that
are represented as basic words. This is the input to the next

stage.

Slide 15.1.6

To do that, let's talk about the input and output characteristics
of each of them.

By focusing on the input to each successive stage in the
interpretation, we can get a sense of what should happen at each
stage, and thus get a sense of how to build an interpreter.

Stages of an interpreter [input to each stage

Environment

"{average 4 (+ 5 5))"

Printer

4 w4

Slide 15.1.8

The first step is to use a lexical analyzer to convert that string
of characters into units or words. This is shown here, where the
string gets converted into a set of words or isolated characters
like "(" and ")" and "+" and numbers. Thus the input to the next
stage is an ordered sequence of these units or words.

Stages of an interpreter
"{average 4 (+ 5 5))"
[d [4]
5] b] b
symbol 4 d
¢

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Stages of an interpreter [input to each stage

"{average 4 {(+ 5 5))"

[rereee] [[

[
[+] [[=]] [

{ Evaluator

symbol 4
averags

Envircnment

symbol +| 5

]

:

¢

10414

Slide 15.1.10

Now comes the heart of the interpreter. We want to take that
tree structure and deduce its value. First, notice the form of tree
structure. We will talk about this in detail later, but you can
already see how the parser has converted things into a tree.
Every time we see an "(", indicating the beginning of a new
combination, we have created a new list structure. If the parser
is already inside a list structure, it drops down a level, so that
we build up a tree where each horizontal slice through the tree
corresponds to some combination. Now what is the evaluator
supposed to do? It wants to take that tree structure, plus an
environment, and interpret it. And what does that mean? Think

of the environment as a way of associating names with more primitive values. It acts much like a dictionary. The
evaluator will use a set of rules to walk through this tree, looking up values associated with symbols from the
environment, i.e. from that dictionary, and then using the rules to reduce complex expressions to simpler things,
culminating in some simple value that we will return.

Slide 15.1.11

That value becomes input to the final stage. The printer simply
converts things back into the appropriate form for display on

the monitor, and then ...

Stages of an interpreter |input to each stage

"(average 4 {(+ 5 5))"

njc=]ojn

[+] [[¢]] [

{ Evaluator

symbol 4
average

Environment

symbol +| 5

5

:

(f nyn

1214

Stages of an interpreter [input to each stage

g

"({average 4 (+ 5 5))"

e=jojju

5] b O]
symbol| 2 -
average e e TS 5 5

:

4- " 114

Slide 15.1.12
... that just gets displayed to the user.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 15.1.13
So here is a summary of that process in words.

Goal of this lecture

» Implement an interpreter for a programming language

* Only write evaluator and environment
« use scheme's reader for lexical analysis and parsing
+ use scheme's printer for output
* to do this, our language must look like scheme

» Call the language scheme*
« All names end with a star

 Start with a simple calculator for arithmetic
* Progressively add scheme* features

(ﬁ 14014

Role of each part of the interpreter

+ Lexical analyzer
= break up input string into "words" called tokens
+ Parser
« convert linear sequence of tokens to a tree
« like diagramming sentences in elementary school
+ also convert self-evaluating tokens to their internal values
- #£ is converted to the internal false value
+ Evaluator
« follow language rules to convert parse tree to a value
« read and modify the environment as needed
+ Printer
= convert value to human-readable output string

4 1314

Slide 15.1.14

Our goal is to implement an interpreter. Actually, that's not
quite right. Our goal is for you to understand what goes into an
interpreter, which we will explore by implementing one. Since
the key part of an interpreter, the crucial part, is the evaluator,
we are going to concentrate almost exclusively on that. We are
going to use Scheme for all the rest of the pieces, that is, we
will use Scheme's lexical analyzer and parser, and Scheme's
printer, rather than building them from scratch. This means of
course that we will need to create an evaluator for a language
that looks a lot like Scheme in the sense of having a tree
structure as the output of its parser and a set of rules for

manipulating that tree structure, as the way of dealing with the actual evaluation. It also says that the syntax of the
language we are going to use to demonstrate an interpreter will need to look at lot like Scheme, in terms of things
like using parentheses to delimit expressions and other related issues.

We say this because we don't want you to get confused between what is going in Scheme and the general ideas of
building an evaluator and interpreter. Our goal is to build an interpreter, especially the evaluator part, and let you
see how that occurs and use that to explore the idea of how these things implement the rules for a language. We are
going to build our own simple language and its evaluator. For convenience, we are going to call this language,
Scheme*. It has a lot of the characteristics of Scheme, but we will use the convention that a * will be placed at the
end of every expression in our language, to distinguish it from the corresponding Scheme expression.

We'll start with a simple evaluator and work our way up. The first simple evaluator will be one that handles simple

arithmetic expressions.

6.001 Notes: Section 15.2

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 15.2.1
Our plan is to start by building an evaluator that handles 1. Arithmetic calculator

arithmetic expressions, and in fact we will restrict ourselves just Warnt to evaluate arithmetic expressions of two arguments,
arithmetic expressions of two or fewer arguments. We would fike:

like to be able to evaluate things like the example shown on the (plus* 24 (plus* 5 6})

slide: adding 24 to whatever we get by adding 5 and 6.
Notice the * at the end of the symbol pl US to indicate that

this is something that we will build within our language.

4 1720
Slide 15.2.2
s omt ttar o1 1o come o 2 And here is some code that captures how we will evaluate
et (o) (Lt s b expressions of this form. This is identical to the code listed in
. P the separate code handout, and | suggest you have that page
({sum? exp) {eval -sun exp)) H
(CI5 o espression + 1) handy as we go through this development.
{define (eval-sum exp)
{+ (eval (cadr exp)) (eval (caddr exp))))
{eval '(plus* 24 (plus* 5 6)))
ﬂ 220
Slide 15.2.3
Notice what we are doing here. We are using our knowledge of e o comer o1 (ot tome o1 s
Scheme to describe the process of evaluating expressions in this e e
new language. We are writing, in Scheme, the description of - M.
{(sum? exp) {eval-sum exp))
that process. el S SR
Okay, what do we need? We have a procedure for evaluating S T

(+ {eval (cadr exp)) {(eval (caddr exp))))

expressions in our new language, called eval . Notice its

form. It has a way of dealing with the base case, which is an
expression that just consists of a number. And to do that it uses
type checking.

Then, we have a way of dealing with the compound case. Here, | 4
it uses type checking to see if we have a sum and notice how
this works. It uses the keyword of the expression to determine the type of that expression. If the expression is a
sum then we will just add, using the primitive operation of addition, the values of the subexpressions. But a key
point arises here! To get those values we need to evaluate each subexpression as well, since we don't know at this
stage if they are just numbers or are themselves compound expressions.

{eval '(plus* 24 (plus* 5 6)}}

a0

We are just walking through a tree ...
plus* 24 :
plus* 5 6
:(E 420
Slide 15.2.5

And what does €val do with this input? Check the code on
the handout. Eval grabs the list and tests its tag. That means

it first checks to see if this whole thing is a number. Since it is
not, it takes the first element of this list structure and checks to st

see if it is the special symbol pl US* .

We are just walking through a tree ...

e

i = ME e
¥ ' ¥

plus*

(eval — g ‘ b)
CODE LHJ——LHJ——L‘JA

plus* 5 6

sum? checks the tag

4 6420

Slide 15.2.7

Sonow eval has reduced this to applying eval - sumto
the tree structure shown. Notice what the body of eval -
S uUMdoes. It walks down the tree, grabbing out the two

subexpressions, that is the first and second components of this
sum. Eval - sumthen converts this into adding, using the

built-in primitive, whatever | get by evaluating the first
subexpression and whatever | get by evaluating the second

subexpression.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 15.2.4

Let's look at this in more detail. First, let's look at the input to
this evaluation process. Remember that our expression, which
we typed in, is converted into list structure, as a tree of symbols
and numbers. It looks like what is shown on the slide, and this
is what gets handed to the evaluator as a representation of our
example expression. So let's treat this as if this exact tree
structure were passed in to eval .

We are just walking through a tree ...

Il =

plus* 24

(eval — g)

N P N
T

plus* 5 6

Slide 15.2.6

Having done that it dispatches on type to the right procedure to
handle this kind of expression. Having determine that it is a

S UMby checking the tag, it sends it off to eval - sum and

this is (for now at least) just a normal procedure application.
We apply the procedure to the expression.

We are just walking through a tree ...

{eval-sum —_—)

'y

plus* 5 6

plus* 24

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

We are just walking through a tree ...

(eval-sum — b]

plus* 24 » " i
plus* 5 6
plts* 5+ 6‘

Slide 15.2.8

That leads to this form. Notice what we have done: we have
reduced evaluation of one expression into some simple
primitive operations on evaluation of other subexpressions. And
what has that done? It has literally just walked down the tree
structure that represents this expression, pulling out the right
pieces. It has used the tag to tell us who to send the expression
to, and then it has simply grabbed cars and cdrs of the list
structure, and handed them off to new evaluations. Now at this
stage, evaluating the first subexpression (eval 24) is

easy. We see from our code that it will use type checking to
determine this is a number and simply return that expression.
And that’s nice! This is just pointing to the number 24 so the

number 24 gets returned. What about the other piece?

Slide 15.2.9

Well this just looks like the kind of expression we started with.
We are evaluating some list structure that happens to represent
asum. It's got a tag at the front to say it is one of these plus* 2
p| US™ expressions, so we can do exactly the same thing.

The evaluation of this expression will unwrap into an eval - (+ (eval 28) (eval W)
S UMmof the same list structure, and that will reduce to a N F
primitive application of + to whatever | get by evaluating the

subexpressions, and that I get by walking down the tree,
grabbing the right pieces, applying €val and getting back the ¢

numbers.

We are just walking through a tree ...

plus* 24

(+ (eval 24) (eval

{+ (eval 5) ({(eval 6))

¢

A

10420

We are just walking through a tree ...

{+ (eval 5) ({eval 6))

Slide 15.2.10

And now we see that we have unwrapped this abstraction down
to some primitive operations, primitive application of addition
to some simple expressions, in this case just numbers. And of
course this will finally reduce to the answer we expect.
However, a key thing to note is how this simple evaluator has
taken in a tree structure representing an expression and has
unwrapped it into successive evaluations until it reduces to a set
of applications of primitive built-in procedures to primitive
values.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 15.2.11
Since this is important, these stages of eval unwrapping into 1. Arithmetic calculator
simpler and simpler things, and the dispatching on type to the (plus* 24 (plus* 5 6))
correct procedure, let's look at this one more time. In this case,
\ A N + What are the argument and return values of eval each
let's focus on how eval unwinds the abstraction, and what time it is called in the evaluation of line 177

values are returned at each stage of the evaluation. As before,
you may find it convenient to have a copy of the code in front
of you as we go through this examination.

4 1720

Slide 15.2.12
So we start with @val of this full expression. We've put a '
in front of the expression to show that we want list structure

equivalent to this expression.
Thus we start with an eval of this expression.

1. Arithmetic calculator

{plus* 24 (plus* 5 6))

* What are the argument and return values of eval each
time it is called in the evaluation of line 177

| {eval "({plus* 24 (plus* 5 6)))

4 1220

Slide 15'_2'13 . . . 1. Arithmetic calculator
Eval first checks the type of this expression, deduces that it

is not a number, but is a sum (because of the type tag), so this What aro th o returm valuo of)
- - = at are the argument and return values o 1 eac
expression gets dispatched to eval - sum Eval sends the et o calod e st o o TS

expression to the procedure that is exactly set up to deal with
this particular form of list structure.

{plus* 24 (plus* 5 6))

{eval-sum ' {plus* 24 (plus* 5 6)))

{eval ' (plus* 24 (plus* 5 6)))

4 13710

Slide 15.2.14
Now, eval - Sumsays, "go ahead and add whatever | get by
eval i ng each of the pieces". We haven't actually specified
» \What are the argument and return values of eval each . . .
time it is called in the evaluation of line 172 in what order to do the subpieces, but for convenience assume
that it is done from left to right. So we now need to trace down
the tree, and get (eval 24).

1. Arithmetic calculator

{plus* 24 (plus* 5 &))

{eval 24)

{(eval-sum ' (plus* 24 {(plus* 5 6)))

{(eval "({plus* 24 (plus* 5 6)))

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 15.2.15
Eval once again checks the type of this expression, deduces 1. Arithmetic calculator
it is a number, and just returns that expression, literally a (plus™ 24 Iplus™ 5 %))
pointer to that thing which is an internal representation for the - gk are iheargumeriiand rdlumvaliesiofavai each
number 24 time it is called in the evaluation of line 177
(eval 24) 24
{eval-sum ' {plus* 24 (plus* 5 &))}
(eval '(plus* 24 (plus* 5 6)))
Q 15720
1. Arithmetic calculator Slide 15.2.16

Next, eval has to evaluate the second subexpression, so this
isthe eval of the expression shown at top right. As before,
* What are the argument and return values of eval each

time it is called in the evaluation of line 177 we are going to dispatch on type, i.e. check to see what kind of
"beast” this is, deduce that it is a "sum™ and therefore pass this
on to the right procedure to handle sums.

{plus* 24 (plus* 5 6))

(eval 24) | 24 | (eval "{plus* 5 6))

(eval-sum ' (plus* 24 (plus* 5 6)))

{eval "({plus* 24 (plus* 5 6)))

q 16:20

Slide 15.2.17
Once more, €val - Sumwill reduce to applying the addition

operation to whatever it gets by evaluating the subpieces. Thus,

. . « What are the argument and return values of eval each
we need to extract the subexpressions and once again apply e -
eval tothem. Notice the nice recursive unwinding that is

going on here.

1. Arithmetic calculator

{plus* 24 (plus* 5 6))

(eval-sum ' (plus* 5 6))

(eval 24) 24 {eval '"(plus* 5 &))

{eval-sum ' {plus* 24 (plus* 5 6)))

{eval ' (plus* 24 (plus* 5 6)))

(E 17710

1. Arithmetic calculator Slide 15'2_'18 . . .
Well this just unwraps one more time. Again, we will apply +

to whatever we get by evaluating the two pieces, and eval in
» \What are the argument and return values of eval each

time it is called in the evaluation of line 172 both cases just dispatches on type, determines the expression is
a number and returns the expression as the value.

{plus* 24 (plus* 5 &))

(eval 5) | 5 | (eval 6) 6

(eval-sum ' (plus* 5 6))

{eval 24) 24 {eval "{plus* 5 6))

{(eval-sum ' (plus* 24 {(plus* 5 6)))

{(eval "({plus* 24 (plus* 5 6)))

18120

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 15.2.19
Notice where we are at this stage. We have unwrapped this 1. Arithmetic calculator
compound expression into a nested sequence of operations of (plus* 24 (plus* 5 6))
prlmltlve' things to primitive values. At this stage we can gather | Wl are hesergumerfbandrdium yaliesrfsonisench
up the thlngS we have left to do. We have some deferred time it is called in the evaluation of line 1772
operations, for example in the topmost eval - Sumwe can
. eval 5 5 eval 6 8
now add 5 and 6 to get 11, and so on, reducing all the deferred ra 3 | ,(pllu:* —
primitive operations down to a single value. (eval 24) | 24 [(eval ‘(plus* 5 610 |11
{eval-sum ' {plus* 24 (plus* 5 6))) 35
(eval '(plus* 24 (plus* 5 6))) 35
4

1. Things to observe
» cond determines the expression type
* no work to do on numbers

« scheme's reader has already done the work

+ it converts a sequence of characters like "24" to an
internal binary representation of the number 24

+ aval-sumrecursively calls eval on both argument
expressions

20:20

19720

Slide 15.2.20

Thus, we have built a simple evaluator that handles sums of no
more than two arguments. Here are some key points to notice
from this exercise, since our goal is to understand the process of
evaluation.

First, eval does type tag checking. It dispatches based on
type, much like we saw earlier in the course.

Second, numbers are just numbers, so there is nothing really to
do.

Third, complex expressions nicely get recursively evaluated in
pieces. Eval unwraps a complex expression into an

evaluation of the simpler parts, plus a deferred operation to

gather the values back together. Numbers just get handled as numbers. And eventually we reduce this whole thing
down to a set of primitive operations on primitive values.

6.001 Notes: Section 15.3

Slide 15.3.1

Okay, now let's build on this basic system. Suppose we want to
give names to things. For example, suppose we want to have named values

the behavior shown here, in which we can store intermediate Idefine* x+ (plus* 4 5y} store rosulliast
results as named values, and then just use those names
anywhere that we would want to use the actual expression and
its resulting value. This is the kind of behavior we saw earlier in
the term in Scheme, how would we add that behavior to the
evaluator we are building for simple arithmetic expressions?

2. Names

« Extend the calculator to store intermediate results as

(plus* x* 2) use that result

4 11

2. Names

* Extend the calculator to store intermediate results as
named values

{define* x* {(plus* 4 5})
{plus* x* 2)

store result as ¥*
use that result

*Store bindings between names and values in a table

) 1

Slide 15.3.3

This is now the second page of your code handout. Don't be
intimidated by this code, as we have highlighted the things we
have changed from the first evaluator, shown here in bold face e SR R

font.

So what have we added? First, we need another type checker,
something that checks whether the expression is a def i ne*

expression, here called def i ne?. We have also added two

new pieces to the evaluator.

2. Names
(define (define? exp) (tagcheck exp 'define®))

(define (eval exp)
toomd
Clmamber? exp] exp)
(ioum? exp) jeval-sum exp))
(symbol? exp) (lockwp exp))

(alse
ferror "unlmoun expressiom ' exp))il

((define? exp) (eval define exp)) r:E

Slide 15.3.5

Before we look at the procedures that will handle | ookup =
andeval - def i ne, let's first think about what we need.

We will need a way of gluing things together, and we know
how to do that. Let’s just assume a data abstraction, called a S
table. It has a constructor, make- t abl e. Ithasaway of | =

getting things out of a table, thus given a table and symbol,
t abl e- get gives us back either ani | to indicate no

binding for that symbol was present, or the actual binding. We
have a way of putting things into the table, t abl e- put !,

and we have binding-value which when given a binding,

returns the value part of that pairing.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 15.3.2

Of course, the first thing we realize is that this means we will
need a way of storing bindings between names and values. We
can certainly imagine getting the value for something, but now
we have to have a way of storing the name and value together.
Def | ne* has to have some way of gluing pieces together.

So we need to add this capability to our evaluator.

2. Names
(define (define? exp) (tag—check exp 'define™))

{define {eval exp)

? e
? exp) (eval-defina ewp))

ane

Slide 15.3.4
Note that in this version of eval we have a way of creating

names for values, and a way of getting back the value
associated with a name. Thus, we have two new dispatches in
our evaluator: something that checks to see if the expression is
a symbol, in which case we will lookup its value; and
something that checks to see if the expression is a definition
(checked using the special tag def i ne*), in which case we

dispatch to something the evaluates these special expressions.

2. Names
(define (define? axp) (tagchack exp 'define®))
{define {sval exp)

{{mumber? exp) emp)

(lsum? exph {eval-sum expl)
({5ynbol? exp) (lookup exp))
({define? exp) (eval-define emp))
(=lse

lerror "unlnoum expression " expl)))

; variation on table ADT from prior lecture (only difference is ; that table-get
retwns a binding, vhile original version retwrned a value):

void - table

; table-get table, synbol -> (binding | null)

table, symbol, anytype —> undef

hinding-value binding -> anytype

(define envirorment (make-tahle))

(} g

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

What is the point of this? We can simply assume that this table abstraction exists, and then we can build an
environment. Let's define €NVI r onnent in our underlying Scheme to be a table, and then we can create

procedures for | ookup and eval - defi ne.

2. Names
(define (define? exp) (tagcheck exp 'define))
(define (eval =ap!

{oond

{{mumber? exp) emp)

({sun? exp) {eval-sun exp))
((sprbol? exp) (lockup exp))
(tdefine? exp) (eval-define emp))
telse

(error "unlmown expression ' exphilh

; variation on table AT from prior lecture(only difference is ; that table-get
; returns a binding, vhile original version retwrned a value):

; make-table woid > table

i table—get table, symbol -> (binding | mull)

: table-put! table, symbol, anytype -> wundef

: binding-value binding -> anytype

(define enviromment (make-table))

(define (loo]
(let ((binding (table-get enviromment mame)))

mmmm wbound variable: " name)

4 618
Slide 15.3.7 f:&'::e:le(ine? exp) (tag—check exp 'define™))
The real thing we have added is a way of dealing with a new e
kind of expression, something built by def i ne* thatis i el Eane
creating a binding of a name and a value. So what should this e R AR
do? B el e
This procedure says to walk the tree structure to get out the iUl D e et

name (remember this is just walking the tree structure, there is
no evaluation going on here). Then, evaluate the expression
that will provide the value of the binding. Notice the use of
eval which recursively returns to the top level, and evaluates

this expression using the same rules! Once | get a value, | stick
it into the table that represents the environment, paired with the

name in a binding.

Evaluation with names

+ {eval ' (define* x* (plus* 4 5)))
+ {eval ' (plus* x* 2))

* \What are the argument and return values of eval each
time it is called in lines 34 and 357

+ Show the environment each time it changes during
evaluation of these two lines.

(E &g

Slide 15.3.6

Looking up the value of a symbol is simply a matter of
manipulating the table. We find the binding in the table for this
symbol, and then return that value part of the binding. This is
simply manipulating the environment and we can abstract that
away.

(dafina environment (make-tahle))

(define (lookup name)
(lat ((binding (tshle-get enviromment nama)))
(if (null? binding)
terror " wbound variable: " name)
Winding-value binding))))

(define (eval-define exp)
(let {(name (cadr exp))
(defined-to-be (caddr exp))) (E
(table-put! enviromment name (eval defined-to-be))
‘undefined))

Slide 15.3.8

Since we have added a new component to our evaluator, let's
again look at what happens if we evaluate these two expressions
in our evaluator, especially watching to see what is returned
each time we recursively call @val in this process. So keep

track of the argument and return values of eval as we trace

through this process, using the code handout to keep track of
this process.

Slide 15.3.9

So let's use our extended evaluator, by evaluating this
def i ne* expression. Remember that this expression is just (eval ' (define* x* (plus* 4 5)))

represented as tree structure, the ' is just used here to remind

that the parser will have reduced this input expression to the
equivalent tree structure. So what does eval do with this

expression? It is a dispatch, so it will deduce that this is a
def i ne* expression, and will thus send the expression to a

handler. That procedure will decide to eval the value

subexpression.

Evaluation of page 2 lines 34 and 35
(eval ' (define* x* (plus* 4 5)))

(eval ' {plus* 4 5))
{eval 4) ==> 4
{eval B) ==> 5
=> 9

4 1018

Slide 15.3.11

And then what does eval - def i ne say to do (remember

this is where we were when we went off to evaluate the {eval ' (plus* 4 5})
subexpression). It simply takes the name (or symbol) X* ,

grabbing that off of the tree structure, it takes the returned
value, and it binds them together in the table somewhere.

Evaluation of page 2 lines 34 and 35
{eval '(define* x* (plus* 4 5)))

{eval " ({plus* 4 5))

(eval 4) ==> 4
{eval 5) ==> 5
==> 9 names values
==> undefined x* g

q 1218

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Evaluation of page 2 lines 34 and 35

4 ang

Slide 15.3.10
Well that is a lot like what we saw before! We are now doing an
eval on this list structure. And we have literally walked

down the list structure for the first expression to grab off this
piece and now evaluate it. This just recursively determines the
type of expression (a SUIT) and thus passes it off to eval -

S UMwhich evaluates each of the subexpressions in turn, then
applies the primitive + operation to return a value (9). So the
value returned by evaluating this subexpression is just 9.

Evaluation of page 2 lines 34 and 35

{eval " ({define* x* (plus* 4 5)))

{eval 4) ==> 4
{eval 5) ==> 5

==> 9 names values

x*)

ﬁ 1718

Slide 15.3.12
And having done its work, it just returns the symbol
undef i ned to tell us it has completed the evaluation of

this definition.

Slide 15.3.13

So now let's evaluate an expression that includes one of these
names, such as the expression shown. As before, this expression
is converted to tree structure, which is then evaluated. The tag
checking dispatches this to @val - Sum That procedure says

to add together (using +) whatever | get by recursively

evaluating the subpieces.
Firstis(eval X*) . Notice in line 9 of evaluator that

because this part of the tree structure is a symbol, we do a
| ookup. That is, we use the table abstraction to get the

binding associated with this symbol, and returns the value
associated with that binding in the table, in this case 9. The rest

of the evaluation proceeds as in previous cases.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Evaluation of page 2 lines 34 and 35
{eval " ({define* x* (plus* 4 5)))

(eval ' (plus* 4 5))

{eval 4) ==> 4
{eval 5) ==> 5
==> 9 names values
==> undefined x* g
{eval ' (plus* x* 2})
{eval "x*) ==> 9
{eval 2) ==> 2
==> 11
Q 1318

Evaluation of page 2 lines 34 and 35

(eval ' (define* x* (plus* 4 5)))

{eval " ({plus* 4 5))

Slide 15.3.14

So in fact this was fairly straightforward. As long as we have
the abstraction of the table, we see how we can add bindings to
it, through definitions. Notice also how just walking the tree
structure of the expression allows us to grab off symbols
without evaluating them, in this case, getting X* so that we

could bind it together with a value in the table. Other than that,
all the other things still hold for our evaluator, we can simply
now give names to values.

{eval 4) ==> 4
{eval B) ==> 5
=> 9 names values
==> undefined x*]
(eval ' (plus* x* 2))
{eval 'x*) ==> 9
{eval 2) ==» 2
==> 11
Q 1418
Slide 15.3.15

Having now extended our evaluator by adding in this new
capability, let's step back and extract some key messages. First
of all, notice that we added two new dispatch clauses to our
evaluator. One of them just dispatches to eval - def i ne

using standard type checking of tags. The other clause,
however, relies on using SY MOl ?, the underlying Scheme

function, to check for a name. Why is this reasonable?

Note that we are relying on the underlying Scheme reader to
convert things into a parse tree, and in particular, that reader
will convert sequences of characters like X * into symbols in

the parse tree, which then gets passed on to eval . Thus,
eval will get a structure that can be handled by Sy nbol ?.

2. Things to observe

+ Use scheme function symbol? to check for a name
« the reader converts sequences of characters like "x* "
to symbols in the parse tree

Q 15018

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

2. Things to observe

* Use scheme function symbol? to check for a name
to symbols in the parse tree

« Can use any implementation of the table ADT

« the reader converts sequences of characters like "x* "

Slide 15.3.16

Note the second thing we added, a table. Or rather, we added an
abstract data type of a table to represent our environments. Note
that we could have used any implementation of a table. We are
not relying in any way on the specifics on a table
implementation, and that is exactly the point. As long as we
have a way of creating tables, we can build an evaluator that
simply manipulates them.

;(E 18019

Slide 15.3.17

A key thing to note as well is that we have now added a special
form to our little evaluator! If you think carefully about it, you
will note that prior to this we were simply evaluating normal
combinations, which for this language were sums of two
arguments. However, eval - def i ne does something

different. It recursively evaluates only the second
subexpression! In other words, eval - def i ne takes the

first subtree of the parse tree passed in, without evaluation, and
treats it as a symbol. It only does evaluation on the second
subtree.

2. Things to observe

* Use scheme function symbol? to check for a name
+ the reader converts sequences of characters like "x*"
to symbols in the parse tree

= Can use any implementation of the table ADT

* eval-define recursively calls eval on the second
subtree but not on the first one

1718

6.001 Notes: Section 15.4

Slide 15.4.1

What else can we add to our evaluator? To this point, we have
no way of making decisions. We can't branch to do different
things depending on a value. So let's extend our evaluator to
handle this, i.e. let's extend our calculator to handle conditions
and ifs: Statements such as the example shown, in which if
something is true we want to do one thing, otherwise we want
to do something else.

3. Conditionals and if

+ Extend the calculator to handle conditionals and if:
(if* (greater* y* 6) (plus* y* 2) 15)

1z

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 15.4.2
3. Conditionals and if We can already see from our example that we are going to need
: Exf?"‘ithe Ca'CU'atfir t°*hand'e °°"di2°"i'5 ang it to add two kinds of things. First, we will need procedures that
R rEEEee e S ELTSS R return Boolean values. Thus, gr eat er * should evaluate a
greaert A ggz::::g: e relyine's hooksan wberp, | PAIN O expressions, then return t r ue if the value of the first
checks if value is true or false expression is larger than the value of the second expression. Of
“What are the argument and return values of eval each course, we can easily imaging adding other such expression to

time it is called in line 327

our language, so long as we have some expressions that

evaluate expressions and return Boolean values.

The second thing we will need is an operation that lets us

< control the branching of our code. We know that this should be
a special form in which we should first evaluate the first

subexpression, check its value, and then based on that value
either evaluate and return the second subexpression or evaluate and return the third subexpression. This means we
need to add ani f * expression to our language.

Slide 15.4.3
As before, there is a fair amount of code here, but we have
highlighted the changes from the earlier version. First, we need

two new ways of dispatchingon gr eat er * andi f *

expressions, just using type checking as before. This means we
need ways of checking the type of such expressions, and we
need to add dispatch clauses to the CONd expression inside

eval , one for each new type of expression. This is just like
before.

expl

[EIRT)

) il exp))
sE) (laskp spl)

4 anz

3. Congdlitionals and if

it — Slide 15.4.4
First, gr eat er * expressions. Remember that €X P will be

a pointer to some tree structure that has been created by the
parser. The first subexpression in that tree structure will be the
symbol gr eat er * . The second subexpression will be some

other expression, as will the third subexpression. Our plan is to
get the values of the second and third subexpressions. We will
use tree operations to extract the right pieces, the recursively
eval uate them. Once we have the values of these

subexpressions, we can use the underlying Scheme primitive
operation to compare the numerical values and return a Boolean
answer.

This may seem a little odd; why not use Scheme's operation directly? Remember, our goal is to understand how to
connect the evaluator to built-in primitives, and to allow for alternative ways of executing operations. So remember
what we do, we walk the tree, grab the pieces, recursively evaluate them, then pass the pieces on to primitive
procedures to complete the reduction to a value.

(de

£ine [greates
(define (iff sp) (tag-check ewp 'if

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 15.4.5

What about | f * expressions? What happens when we EEmuE—rp e

dispatch to eval -1 f ?

Once more, remember that what is passed in to this procedure is
tree structure, created by the parser. This tree structure will
several pieces: the tag I T * ; then tree structure representing the

predicate of the expression; then tree structure representing the
consequent of the expression; then tree structure representing
the alternative of the expression. Notice how in our procedure
we use list manipulation to pull off each piece of the tree, and
then we evaluate the first one.

Once we have the value of t €St , we can then use the

3. Conditionals and if

ine (aval wxp)
0

g 512

underlying primitive mechanism for branching, CONd, to decide that if t €St ist r ue, then and only then,

take the consequent and evaluate it. Ift €St isf al Se, then and only then, take the alternative and evaluate it.

Notice the order in which things are done. This is a special form in which we first evaluate the predicate.
Depending on that value, we either evaluate the consequent or the alternative, and return that value as the value of

the overall expression.

3. Conditionals and if

(dafine (greatsr? s3p) [tag-check e ‘greatsz®))
(define (2£7 =g) (tag-check smp 'if*))

expl

op) epl
) [rval- s wxpl)
ep) iladmp esp)]

bp) dew o n

sl Lo e e
7 aup) (eval-if axp))

ror "urdmenm expression * ewpl 111

a2

Slide 15.4.7

We can assume that we have done the evaluation of
(define* y* 9),since we know what that does. Now

let's look at evaluating the I T * expression.

Slide 15.4.6

So having added these two new expressions to our evaluator,
let's look at some examples of evaluation using them, as shown
on the slide, tracing through the process of recursively using
eval .

We are just walking through a tree ...

—

15

A ! !

greater* ¥ 6 plus* ¥

w2

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

We are just walking through a tree ...

(eval)

greater* y* 5

[

Slide 15.4.9

Depending on what value is returned by evaluating that first
piece, the evaluator will either walk the tree structure to get out

the consequent piece or the alternative piece, and it will 3 L‘LJ;J—-L‘JJ—-L‘JA
evaluate that piece. Thus, this special form will first evaluate %, SN | T i ' !

one piece, and then branch to an evaluation of one of the other

two pieces, but only one of them.

Evaluation of page 3 line 32

{eval ' (greater* y* 6))
{eval 'y¥*) ==> 9
{eval 6) ==> 6

==> $#t

{eval ' (plus* y*x 2))
{eval 'y*) ==> 9
{eval 2) ==> 2

==> 11

==> 11

4

{eval ' (if* ({(greater* y* 6) (plus* y* 2) 15))

102

Slide 15.4.8
The first thing eval does is check this expression. Is it a

number? Is it a sum? Is it a symbol? Is it a define? Is it a
greater? Is it an if? In other words, it checks the tag on the
expression, eventually determining that thisisani f *

expression. Thus it dispatches the expressionto eval -1 f . If
you look at the code handout, you will see thateval -1 f

first walks down the tree structure and pulls out the predicate
expression. It then eval uates that piece, as shown.

We are just walking through a tree ...

—

(eval :)

greater* ¥* 6
Then (eval |I | ‘|_>|| | _|_.,|I |/|) or {eval 15)

plus* ¥*

oz

Slide 15.4.10
Then we can just step through the stages. The first stage
evaluates the full expression. This dispatches to eval - i f,

which evaluates the first subexpression in the tree structure.
That does a second dispatch to the procedure that handles
gr eat er * expressions. Here we walk further down the tree

to get the subexpressions to this procedure, and recursively
evaluate them. Having returned values (one by lookup, the
other as a number), we actually apply the primitive comparison
operator, and since the returned value is t I U€ we then extract

the appropriate piece of the tree (the consequent) and we
evaluate that piece. This just becomes a dispatch like the

previous cases, and you can see the recursive calls to eval used to get the values of the subexpressions before

the application of the primitive procedure.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 15.4.11
Once more, let's step back and extract some messages from this | 3. Things to observe
exerC|Se + eval -greater is just like eval-sum from page 1

+ recursively call eval on both argument expressions
= call scheme > to compute value

Note that eval - gr eat er isreally just like eval -
Sum Both recursively call eval on the arguments, then
apply a primitive procedure to the resulting values.

4 111z

Slide 15.4.12 _
On the other hand, our conditional, eval - i f , behaved

differently. It is a special form. Rather than evaluating all of its
arguments, it only evaluates some of them, and in a particular
order, as shown on the slide.

3. Things to observe

» aval-greater is just like eval-sum from page 1
* recursively call eval on both argument expressions
+ call scheme > to compute value

+eval-if does not call eval on all argument expressions:
«call eval on the predicate
«call eval on the consequent or on the alternative but
not both

Q 1212

6.001 Notes: Section 15.5

Slide 15.5.1

4. Store operators in the environment

In the last example, when we introduced a new kind of
expression into our evaluator, we had to add a new dispatch into
eval . We created a new type checker for the expression, and

then we added a new clause to the cONd to dispatch off to a

procedure to handle this kind of expression.

That's okay with a small number of things, but we would like to
add lots of operators, for multiplication, exponentiation, less
than, and so on. How can we add lots of operators to our
evaluator but still keep eval compact, and more importantly

easy for us to extend later?

* Want to add lots of operators but keep eval short

+ Operations like plus* and greater* are similar

« evaluate all the argument subexpressions
+ perform the operation on the resulting values

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 15.5.2
4. Store operators in the environment We have already hinted at how to do this. We have noted that
* Want to add lots of operators but keep eval short operations like pl UsS* and gr eat er* are quite similar.
* Operations like plus* and greater* are similar .
" evaiuafe dllfieargumentabetmensions They evaluate al! their argument§, and then they perform a
» perform the operation on the resulting values partlcular operatlon on the rESU|t|ng values. That sounds like a

common pattern, so we would like to capture that pattern and
take advantage of that abstraction.

Slide 1_5-5-3] . . 4. Store operators in the environment
In particular, we will call this standard pattern an application. o T T P B rS BIE NS SR eral AR

It is an application of a particular operator to a set of arguments. | . operations like pLus* and greater+ are similar

We can therefore implement a single case in our evaluator for - evaluate all the argument subexpressions
all applications: just one way of dispatching. That will allow us " perform the operation on the resulting values
i i i +Call this standard patt licati
to eaglly extend other operatlo_ns to our evalu_ator, by simply e ol znplcafions
creating the operation and having the same dispatch handle the
application.

4 3027
4, Store operators in the environment Slide _15'5'4 Lo . i i
o o Tt TS B S el Y Here is our plan for accomplishing this. We will now first
. Operations like plus* and greaters are similar evaluate the first subexpression of an application. Note that in
* evaluate all the argument subexpressions the previous cases we did not do this, we used the name to
" Berform theioperation on the resulting values dispatch in eval to the right primitive procedure. Now we
«Call this standard patt licati
" Implement-asingle:case In svar for-alappiicalions will evaluate the first subexpression to deduce the operation to
apply. But that means we have to have a way of getting access
P GvaL the first subexpression of an appliation to the appropriate operation, so we will put a name in the
:5:};g?ﬁzgmgﬁeeigvggggf: [Sasn.apclation environment for each operation that we want to treat as an
“apply the procedure to the operands application. The value of that name will be a procedure and
4 o then we can simply apply the procedure to the values of the

other subexpressions. How can we make this extension to our
evaluator?

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Sllde 1555 4. Stere procedures in the environment
As with the previous cases, we suggest that you look at a ey

printout of the code as we walk through this exposition. As
before, we will try highlighting the changes we make to our
existing evaluator, as we evolve to handle new kinds of
expressions.

First, we need a way of detecting an application, and we are
going to simply rely on the expression being a pair, that is, if it
is a combination, then it is an application. But if we are going to
assume that, then in our dispatch cases inside eval ,

applications had best be things we do after we check for the
special kinds of things. And thus we can see a form evolving. In | ¢
eval we first check for the primitives (numbers and

symbols), and then we consider compound expressions and check for any that are special forms (things that do not
obey the normal rules for evaluation, such as def i ne* and i f *). Finally, we check for applications, that is,

we make sure we do have a compound expression, in which case we treat it as an application. Notice that we can
now drop the special checks for gr eat er * and similar operations, since they will now be caught by the
application case.

Notice what we do if we have an application. Remember that the input is one of those tree structures representing
the expression. We grab the first element of the tree and evaluate it. That should give us a procedure. We then
walk down all the remaining elements of the tree and we will map eval down that list. We are just treating

A as a primitive here, so that it applies €val to each element of that list and create a new list of the resulting

values.
Then we will apply that procedure value to that list of arguments.

o o Slide 15.5.6

We know that recursively eval should do the right thing. If
our expression is an application of a named procedure to some
arguments, it will lookup the value of the name, which
presumably is attached to some procedure in the environment.
Similarly, mapping €val down the list of other expressions

will return a list of values. Now, how do we do an application?
Conceptually, apply says: check to see if the operator, the first
subexpression, is a primitive, that is, one of the things built into
my simple calculator (e.g. greater*, plus*). If it is, then get the
¢ corresponding primitive and apply it to the arguments, that is
just do the normal Scheme thing to this primitive application.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 15.5.7

So to use this, I simply need to create primitive operators, and |
can do that with an abstract data type that stores away
underlying procedures (basic things we are inheriting from
Scheme) into a structure. We will make a primitive object by
taking an underlying procedure, tagging it, so that I can check
tags to find primitives and get out the actual procedure from the

4. Stere procedures in the environment

[4efins (application? o) (pair? e]]

data abstraction.

4. Store procedures in the environment

Slide 15.5.8

Remember that we have an environment, a little table
abstraction that contains bindings for things, so initially, before
| start using my evaluator, I can establish in that environment
some built in primitives. For example, | can put in a built in
primitive for Pl US™* and one for gr eat er *, and one for

the symbol t r ue* , which is bound to the machine

representation for the Boolean value of true.

This should start looking familiar to you. Note that we are
setting up an environment that contains bindings of built in
names to built in primitive procedures. We also have for those
procedures a way of tagging them to tell that they are

procedures we have created. Then our evaluator is going to be able to use those built in primitives to execute the
application of a procedure to some arguments.

Slide 15.5.9

Okay, let's check it out. Let's evaluate the three shown
expressions in order in our little evaluator. This will check both
application and special forms in our new evaluator.

4. Store procedures in the environment

{define (applicatisn? o) ipair? 21]

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Environment after eval 4 line 36
names values
z* 9
truek #t
greater* re
plus* |
*—I symbol
primitive
i scheme
symbol procedure
primitive >
scheme
procedurs
4 ¥ 1047
Slide 15.5.11

So let's step through the stages of evaluation of a simple
expression. As before, keep the code handy to follow along. We
start with the evaluation of the tree structure associated with
(plus* 9 6),the’ isjust use to remind us that this is

tree structure along which we are walking. Eval steps

through a big dispatch checking the type of this expression
against each of its cases. Having decided it is not one of the
explicit things about which it knows, it checks that it is a

compound procedure, and since this is, eval assumes we

have an application.

Evaluation of eval 4 line 37
(eval " (plus* 9 6))
(apply (eval 'plus*) (map eval '({9 6)))
4 1227
Slide 15.5.13

So what happens with the eval of the symbol pl us*?
Again, eval walks through each of its cases, checking the

type of this expression against those cases. It decides this is a
symbol, so it just does a look up in the environment. This just
returns the representation associated with that name, in this case
a tagged list, as shown. We now have the value of the operator.
We can move on to mapping eval down the list of other

pieces, which we know turns into a list of applying eval to

each piece in turn.

Slide 15.5.10

First, what does our environment look like? It is just an abstract
data type of a table, containing names and values. This will
include a binding of Z* to 9 which we know comes from

evaluating the def i ne* expression. We also have a binding
fort r ue*, since that was one of the built in definitions. We

also established bindings for names to representations of some
primitive procedures.

Evaluation of eval 4 line 37

(eval ' ({plus* 9 6))

Q 1

Slide 15.5.12
Soeval unwinds this into an application of whatever we get

by evaluating the first part of the tree to the list of the
evaluation of the remaining parts of the tree. Notice how we are
just walking through the tree, grabbing the pieces, and
recursively evaluating each one in turn.

Evaluation of eval 4 line 37

(eval "{plus* 9 &))
{apply (eval 'plus*) {(map eval '(9 6)))

{apply ' (primitive #[add])
{list {(eval 9} ({(eval 6&))

Q 19017

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Evaluation of eval 4 line 37
{eval '(plus* 9 6))
(apply (eval "plus*) (map eval '({9 6)))
{apply ' (primitive #[add])
(list (eval 9) (eval 6})
{apply '(primitive #[add]) '(9 6))
4 14427
Slide 15.5.15

Appl vy first checks the argument to make sure it is a

primitive. Since this one does have the right tag, it can reduce
this to the underlying Scheme application of the procedure
associated with addition to the values. And that just reduces to {list (eval 9) (eval 6))

Evaluation of eval 4 line 37

(eval " (plus* 9 6))
(apply (sval 'plus*) (map eval '({9 6)))
{apply ' (primitive #[add])

(list (eval 9) (eval 6))
{apply ' (primitive #[add]) '(9 6})
(scheme-apply

(get-scheme-procedure ' (primitive #[add]))
(9 6))

{schems-apply #[add] "({9 6})

4 1627

Slide 15.5.14
And of course we have seen what this does. For each
expression, @€Val checks the type of the expression, decides it

is a number, and just returns that expression as the value. This
results in a list of the values 9 and 6.

Notice the form we now have: an application of a representation
of a primitive procedure to a list of values. So we can now do
the apply.

Evaluation of eval 4 line 37

{eval "{plus* 9 &))

{apply {(eval 'plus*) {(map eval '({9 6}))
{apply ' (primitive #[add])

{apply ' (primitive #[add]) '(9 §6))
{schems-apply

{get-scheme-procedure '(primitive #[add]))
‘(2 8))

(E 16027

Slide 15.5.16

...this case. We just have a Scheme application of one of its
primitive procedures to a list of values. Notice what we have
done. We have reduced evaluation of an expression to an
application of a procedure to a set of values, where we have
recursively evaluated each subexpression to get that procedure
and list of arguments. If the arguments were themselves
combinations, we would have done the same process
recursively on each of them, continually unwinding the
evaluation down to an application, in this case of addition to
some values ...

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 15.5.17

... returning the value we expect. The key thing to see here is
the evolution of evaluation of a combination reducing to

application of a procedure to a set of values.

Evaluation of eval 4 line 38

{eval ' (if* true* 10 15))

18127

Slide 15.5.19

That reduces to using the special procedure eval - i f on
this expression, and check the code to remind yourself what

eval -1 f does.

Evaluation of eval 4 line 38

{eval '"(if* true* 10 15))
{eval-if ' ({if* true* 10 15})

{let ({test {(eval 'true*))}) ({cond ...})

007

Evaluation of eval 4 line 37

{eval '({plus* 9 6))
{apply {(eval 'plus*) (map eval "(9 6)))
{apply '{primitive #[add])
{list {eval 9} ({(eval &)}
{apply ' {primitive #[add]) '{9 &)}

{schems-apply
{get-scheme-procedure '(primitive #[add]))
(9 8))

{scheme-apply #[add] ' (92 6))
5

4 17T

Slide 15.5.18

That example demonstrates that our normal procedure
applications now work. Let's make sure that special forms still
work, by considering the example of ani f * expression.

Of course we get the behavior we expect. Given the tree
structure associated with this expression, @vVal checks each

case in its set of possibilities, checking the type of expression
until it deduces that thisisan 1 T * expression. In this case, it

dispatches off to a procedure designed to handle such
expressions. Note that it reaches this case before it gets to
normal applications.

Evaluation of eval 4 line 38

{eval "{if* true* 10 15))

{eval-if " {if* true* 10 15})

10727

Slide 15.5.20
Eval -1 f first evaluates the predicate. It takes the

expression, walks down the tree structure, pulls off the first
subexpression, and evaluates it. We will temporarily give the
result the name test. Key point is that we only evaluate this first
subexpression, before we look at anything else.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 15.5.21

Eval on this expression again walks through its cases,

decides this is a symbol, and does a look up on it. It goes into
the environment, finds the binding of this symbol in that table
abstraction, and returns the binding, in this case the underlying
representation for the Boolean value of true.

Evaluation of eval 4 line 38
(eval '"(if* true* 10 15))
(eval-if ' (if* true* 10 15))
{let ({test (ewval 'true*)))
{let ({test (lockup 'true*)))
{let (({test #t)) {(cond ...)}))

fosnd o

1)

{cond ...

)

2207

Slide 15.5.23

and this reduces to simply evaluating this piece of the
expression tree, and will return the value of this expression as
the value of the overall I f * expression. Because this is a

number, this is self-evaluating and returns ...

Evaluation of eval 4 line 38
(eval '"(if* true* 10 15))
{eval-if ' {if* true* 10 15)})
{let ({test {(ewval 'true*))})
{let ({test {lockup 'true*)))
{let ((test #t)) {cond ...})
{eval 10)

10

{cond ...

1)

{cond ...

)}

Evaluation of eval 4 line 38

{eval T{if* true* 10 15))
{eval-if ' ({if* true* 10 15})
{let {({test {eval 'true*))) (cond ...))}

{let ((test (lcocokup "true*)))} {(cond ...))

2127

Slide 15.5.22

Having now obtained the value for this lookup, we can now
proceed to the conditional expression. Thus, based on the value,
it walks through the rest of the tree structure representing the
expression, and grabs the appropriate piece.

Evaluation of eval 4 line 38

T{if* true* 10 13))

{eval-if " ({if* true* 10 15))

{let {{test {eval "true*))}} (cond ...}}
{let {({test (loockup 'true¥*))) {(cond ...))
{let ({test #t)} (cond ...}}

{ewval 10)

({eval

37

Slide 15.5.24
...Just the expression itself. _
Key thing to notice is how eval ofani f * has walked

through the tree structure representing the expression, in a
particular order, and it has reduced the evaluation of that
expression to the evaluation of one of the subexpressions.
Also notice how we did not walk through all of the tree
evaluating all of the pieces. We only evaluated "on demand",
which is very different than an application.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 15.5.25

In fact, notice that appl y is never called here. We only do

evaluation of pieces of the expression. Of course if one of those teval "(if* true* 10 15))
pieces had been an application we would have used appl y

but in terms of the parts of I T * we never used appl y.
| f * is aspecial form that handles evaluation of subpieces in a

particular order, but never relies on an application of a 10
procedure since it is not a procedure application.

4. Things to observe

 applications must be last case in eval
* no tag check

0027

Slide 15.5.27

And as we just said, we never used appl Y in the last

example. Applications evaluate all of their arguments before
proceeding. Special forms handle things in a different order,
exactly to control when arguments are evaluated.

So now we have seen a basic way of structuring an evaluator.
We have primitive expressions, primitive means of
combination, primitive conditionals, and primitive means of
application, which enable creation of other expressions. Next
time, we will look at further extending our evaluator.

Evaluation of eval 4 line 38

{eval-if ' ({if* true* 10 15))

{let {({test {eval 'true*))) (cond ...)})}
{let ((test (lcocokup "true*)))} {(cond ...))
{let ({test #t)) (cond ...))}

{aval 10)

Apply is never called!

87

Slide 15.5.26

Once more, let's step back from our example and extract some
key observations. We have now extended our evaluator to
include applications, which means we can create other kinds of
expressions. But to do this, we must have applications be the
last thing considered as an option in eval . We are not

checking tags for applications, we are simply relying on the fact
that is something is not one of the known special forms, it must
be an application.

Also notice the form of eval , in which we first check for

primitives, then for special forms, then for applications.

4. Things to observe

+ applications must be last case in eval
+ no tag check

«apply is never called in line 38
«applications evaluate all subexpressions
sexpressions that need special handling, like 1 £*,
gets their own case in eval

77

	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

