
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 15.1 

Slide 15.1.1 
Our goal over the next few lectures is to build an interpreter, 
which in a very basic sense is the ultimate in programming, 
since doing so will allow us to define our language. 
This is a somewhat surprising statement. But, in fact, as we will 
see through these lectures, it really is correct. The reason it is 
correct is the following: 
Every expression we write in our language has a meaning 
associated with it. Deducing the meaning associated with an 
expression is the process of evaluation. And therefore, if we 
can define the program that executes that deduction for us, our 
definition of that program (i.e. our definition of the interpreter) 
provides for us the exact specification of what's legal in our 
language and how to deduce meanings of expressions within our language. 
Our goal is to work through this understanding in stages. We will explore a series of examples, initially some very 
simple examples, but culminating in a full-scale Scheme evaluator. We are going work our way up to this, letting 
you see how to add the different pieces into an interpreter. 
Before you proceed, however, there is a code handout that goes with this lecture. I suggest that you stop, go back to 
the web page, and print out a copy of the code to have next to you as we go through the lecture. 

Slide 15.1.2 
First, let's set the stage for why we want to do this, why do we 
want to build an interpreter? Why do we need an interpreter? 
Think about what we have seen so far in this course. We have 
spent a lot of time talking about, and using, the ideas of 
abstraction, both procedural and data. We know that this is a 
powerful idea, as it lets us bury details, and it certainly supports 
the expression of ideas at an appropriate level. Said another 
way, we can think about what we want to do and separate that 
from the details of how to actually make it happen. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.1.3 
But eventually, we need a process for unwinding all of those 
abstractions, to get the value that corresponds to an expression’s 
meaning. That means we need to implement semantics of 
interpreting expressions. 

Slide 15.1.4 
Notice the words I used. I said, "we need a process for 
unwinding those abstractions". If we can have such a process, 
then we should be able to describe it in a procedure: that is our 
language for describing processes. 
In fact, you have already seen a version of this description, just 
not as a procedure. What was the description? ... the 
environment model! 
If you think about it, that makes sense. The environment model 
just described the process for how to determine a meaning 
associated with an expression, which in turn just unwrapped the 
abstractions down to the primitive operations. Today, we want 
to talk about how to actually build an evaluator as a procedure 

rather than as that abstract environment model. 

Slide 15.1.5 
First, what are the stages of an interpreter? For the kind of 

languages we are considering, Scheme or Lisp like languages, 

typically there are five stages. There is a lexical analyzer, a 

parser, an evaluator that typically works hand-in-hand with an 

environment, and there is a printer. 

Let's look at what goes on in each of these at a high level, 

before we build them. 




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.1.6 
To do that, let's talk about the input and output characteristics 
of each of them. 
By focusing on the input to each successive stage in the 
interpretation, we can get a sense of what should happen at each 
stage, and thus get a sense of how to build an interpreter. 

Slide 15.1.7 
The initial input is a string of characters, which represents the 
typewritten version of the expression we want to evaluate. This 
is exactly the thing that we would type in at a terminal if we 
wanted to have an expression evaluated. So the initial input is a 
string of characters. 

Slide 15.1.8 
The first step is to use a lexical analyzer to convert that string 
of characters into units or words. This is shown here, where the 
string gets converted into a set of words or isolated characters 
like "(" and ")" and "+" and numbers. Thus the input to the next 
stage is an ordered sequence of these units or words. 

Slide 15.1.9 
The second stage then parses those words into a structure that 
we can use for evaluation. In particular, we convert the linear 
sequence of words into a tree structure. We are using pairs here 
for convenience but that is not required. We could use any other 
representation of trees as well. 
As we do this, we are going convert the self-evaluating 
expressions into their internal values. So notice the form we get 
for the next stage: it's a tree structure, and hanging off of the 
leaves of the tree are numbers, symbols, or other objects that 
are represented as basic words. This is the input to the next 
stage. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.1.10 
Now comes the heart of the interpreter. We want to take that 
tree structure and deduce its value. First, notice the form of tree 
structure. We will talk about this in detail later, but you can 
already see how the parser has converted things into a tree. 
Every time we see an "(", indicating the beginning of a new 
combination, we have created a new list structure. If the parser 
is already inside a list structure, it drops down a level, so that 
we build up a tree where each horizontal slice through the tree 
corresponds to some combination. Now what is the evaluator 
supposed to do? It wants to take that tree structure, plus an 
environment, and interpret it. And what does that mean? Think 

of the environment as a way of associating names with more primitive values. It acts much like a dictionary. The 
evaluator will use a set of rules to walk through this tree, looking up values associated with symbols from the 
environment, i.e. from that dictionary, and then using the rules to reduce complex expressions to simpler things, 
culminating in some simple value that we will return. 

Slide 15.1.11 
That value becomes input to the final stage. The printer simply 
converts things back into the appropriate form for display on 
the monitor, and then ... 

Slide 15.1.12 
... that just gets displayed to the user. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.1.13 
So here is a summary of that process in words. 

Slide 15.1.14 
Our goal is to implement an interpreter. Actually, that's not 
quite right. Our goal is for you to understand what goes into an 
interpreter, which we will explore by implementing one. Since 
the key part of an interpreter, the crucial part, is the evaluator, 
we are going to concentrate almost exclusively on that. We are 
going to use Scheme for all the rest of the pieces, that is, we 
will use Scheme's lexical analyzer and parser, and Scheme's 
printer, rather than building them from scratch. This means of 
course that we will need to create an evaluator for a language 
that looks a lot like Scheme in the sense of having a tree 
structure as the output of its parser and a set of rules for 

manipulating that tree structure, as the way of dealing with the actual evaluation. It also says that the syntax of the 
language we are going to use to demonstrate an interpreter will need to look at lot like Scheme, in terms of things 
like using parentheses to delimit expressions and other related issues. 
We say this because we don't want you to get confused between what is going in Scheme and the general ideas of 
building an evaluator and interpreter. Our goal is to build an interpreter, especially the evaluator part, and let you 
see how that occurs and use that to explore the idea of how these things implement the rules for a language. We are 
going to build our own simple language and its evaluator. For convenience, we are going to call this language, 
Scheme*. It has a lot of the characteristics of Scheme, but we will use the convention that a * will be placed at the 
end of every expression in our language, to distinguish it from the corresponding Scheme expression. 
We'll start with a simple evaluator and work our way up. The first simple evaluator will be one that handles simple 
arithmetic expressions. 

6.001 Notes: Section 15.2




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.2.1 
Our plan is to start by building an evaluator that handles 
arithmetic expressions, and in fact we will restrict ourselves just 
arithmetic expressions of two or fewer arguments. We would 
like to be able to evaluate things like the example shown on the 
slide: adding 24 to whatever we get by adding 5 and 6. 
Notice the * at the end of the symbol plus to indicate that 

this is something that we will build within our language. 

Slide 15.2.2 
And here is some code that captures how we will evaluate 
expressions of this form. This is identical to the code listed in 
the separate code handout, and I suggest you have that page 
handy as we go through this development. 

Slide 15.2.3 
Notice what we are doing here. We are using our knowledge of 
Scheme to describe the process of evaluating expressions in this 
new language. We are writing, in Scheme, the description of 
that process. 
Okay, what do we need? We have a procedure for evaluating 
expressions in our new language, called eval. Notice its 

form. It has a way of dealing with the base case, which is an 
expression that just consists of a number. And to do that it uses 
type checking. 
Then, we have a way of dealing with the compound case. Here, 
it uses type checking to see if we have a sum and notice how 
this works. It uses the keyword of the expression to determine the type of that expression. If the expression is a 
sum then we will just add, using the primitive operation of addition, the values of the subexpressions. But a key 
point arises here! To get those values we need to evaluate each subexpression as well, since we don't know at this 
stage if they are just numbers or are themselves compound expressions. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.2.4 
Let's look at this in more detail. First, let's look at the input to 
this evaluation process. Remember that our expression, which 
we typed in, is converted into list structure, as a tree of symbols 
and numbers. It looks like what is shown on the slide, and this 
is what gets handed to the evaluator as a representation of our 
example expression. So let's treat this as if this exact tree 
structure were passed in to eval. 

Slide 15.2.5 
And what does eval do with this input? Check the code on 

the handout. Eval grabs the list and tests its tag. That means 

it first checks to see if this whole thing is a number. Since it is 
not, it takes the first element of this list structure and checks to 
see if it is the special symbol plus*. 

Slide 15.2.6 
Having done that it dispatches on type to the right procedure to 
handle this kind of expression. Having determine that it is a 
sum by checking the tag, it sends it off to eval-sum, and 

this is (for now at least) just a normal procedure application. 
We apply the procedure to the expression. 

Slide 15.2.7 
So now eval has reduced this to applying eval-sum to 

the tree structure shown. Notice what the body of eval­
sum does. It walks down the tree, grabbing out the two 

subexpressions, that is the first and second components of this 
sum. Eval-sum then converts this into adding, using the 

built-in primitive, whatever I get by evaluating the first 
subexpression and whatever I get by evaluating the second 
subexpression. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.2.8 
That leads to this form. Notice what we have done: we have 
reduced evaluation of one expression into some simple 
primitive operations on evaluation of other subexpressions. And 
what has that done? It has literally just walked down the tree 
structure that represents this expression, pulling out the right 
pieces. It has used the tag to tell us who to send the expression 
to, and then it has simply grabbed cars and cdrs of the list 
structure, and handed them off to new evaluations. Now at this 
stage, evaluating the first subexpression (eval 24) is 

easy. We see from our code that it will use type checking to 
determine this is a number and simply return that expression. 
And that’s nice! This is just pointing to the number 24 so the 

number 24 gets returned. What about the other piece? 

Slide 15.2.9 
Well this just looks like the kind of expression we started with. 
We are evaluating some list structure that happens to represent 
a sum. It's got a tag at the front to say it is one of these 
plus* expressions, so we can do exactly the same thing. 

The evaluation of this expression will unwrap into an eval­
sum of the same list structure, and that will reduce to a 

primitive application of + to whatever I get by evaluating the 

subexpressions, and that I get by walking down the tree, 
grabbing the right pieces, applying eval and getting back the 

numbers. 

Slide 15.2.10 
And now we see that we have unwrapped this abstraction down 
to some primitive operations, primitive application of addition 
to some simple expressions, in this case just numbers. And of 
course this will finally reduce to the answer we expect. 
However, a key thing to note is how this simple evaluator has 
taken in a tree structure representing an expression and has 
unwrapped it into successive evaluations until it reduces to a set 
of applications of primitive built-in procedures to primitive 
values. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.2.11 
Since this is important, these stages of eval unwrapping into 
simpler and simpler things, and the dispatching on type to the 
correct procedure, let's look at this one more time. In this case, 
let's focus on how eval unwinds the abstraction, and what 

values are returned at each stage of the evaluation. As before, 
you may find it convenient to have a copy of the code in front 
of you as we go through this examination. 

Slide 15.2.12 
So we start with eval of this full expression. We've put a '

in front of the expression to show that we want list structure 

equivalent to this expression. 

Thus we start with an eval of this expression. 


Slide 15.2.13 
Eval first checks the type of this expression, deduces that it 

is not a number, but is a sum (because of the type tag), so this 
expression gets dispatched to eval-sum. Eval sends the 

expression to the procedure that is exactly set up to deal with 
this particular form of list structure. 

Slide 15.2.14 
Now, eval-sum says, "go ahead and add whatever I get by 

evaling each of the pieces". We haven't actually specified 

in what order to do the subpieces, but for convenience assume 
that it is done from left to right. So we now need to trace down 
the tree, and get (eval 24). 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.2.15 
Eval once again checks the type of this expression, deduces 

it is a number, and just returns that expression, literally a 
pointer to that thing which is an internal representation for the 
number 24. 

Slide 15.2.16 
Next, eval has to evaluate the second subexpression, so this 

is the eval of the expression shown at top right. As before, 

we are going to dispatch on type, i.e. check to see what kind of 
"beast" this is, deduce that it is a "sum" and therefore pass this 
on to the right procedure to handle sums. 

Slide 15.2.17 
Once more, eval-sum will reduce to applying the addition 

operation to whatever it gets by evaluating the subpieces. Thus, 
we need to extract the subexpressions and once again apply 
eval to them. Notice the nice recursive unwinding that is 

going on here. 

Slide 15.2.18 
Well this just unwraps one more time. Again, we will apply + 
to whatever we get by evaluating the two pieces, and eval in 

both cases just dispatches on type, determines the expression is 
a number and returns the expression as the value. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.2.19 
Notice where we are at this stage. We have unwrapped this 
compound expression into a nested sequence of operations of 
primitive things to primitive values. At this stage we can gather 
up the things we have left to do. We have some deferred 
operations, for example in the topmost eval-sum we can 

now add 5 and 6 to get 11, and so on, reducing all the deferred 
primitive operations down to a single value. 

Slide 15.2.20 
Thus, we have built a simple evaluator that handles sums of no 

more than two arguments. Here are some key points to notice 

from this exercise, since our goal is to understand the process of 

evaluation. 

First, eval does type tag checking. It dispatches based on 


type, much like we saw earlier in the course. 

Second, numbers are just numbers, so there is nothing really to 

do. 

Third, complex expressions nicely get recursively evaluated in 

pieces. Eval unwraps a complex expression into an 


evaluation of the simpler parts, plus a deferred operation to 
gather the values back together. Numbers just get handled as numbers. And eventually we reduce this whole thing 
down to a set of primitive operations on primitive values. 

6.001 Notes: Section 15.3 

Slide 15.3.1 
Okay, now let's build on this basic system. Suppose we want to 
give names to things. For example, suppose we want to have 
the behavior shown here, in which we can store intermediate 
results as named values, and then just use those names 
anywhere that we would want to use the actual expression and 
its resulting value. This is the kind of behavior we saw earlier in 
the term in Scheme, how would we add that behavior to the 
evaluator we are building for simple arithmetic expressions? 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.3.2 
Of course, the first thing we realize is that this means we will 
need a way of storing bindings between names and values. We 
can certainly imagine getting the value for something, but now 
we have to have a way of storing the name and value together. 
Define* has to have some way of gluing pieces together. 

So we need to add this capability to our evaluator. 

Slide 15.3.3 
This is now the second page of your code handout. Don't be 
intimidated by this code, as we have highlighted the things we 
have changed from the first evaluator, shown here in bold face 
font. 
So what have we added? First, we need another type checker, 
something that checks whether the expression is a define* 
expression, here called define?. We have also added two 

new pieces to the evaluator. 

Slide 15.3.4 
Note that in this version of eval we have a way of creating 

names for values, and a way of getting back the value 
associated with a name. Thus, we have two new dispatches in 
our evaluator: something that checks to see if the expression is 
a symbol, in which case we will lookup its value; and 
something that checks to see if the expression is a definition 
(checked using the special tag define*), in which case we 

dispatch to something the evaluates these special expressions. 

Slide 15.3.5 
Before we look at the procedures that will handle lookup 
and eval-define, let's first think about what we need. 

We will need a way of gluing things together, and we know 
how to do that. Let’s just assume a data abstraction, called a 
table. It has a constructor, make-table. It has a way of 

getting things out of a table, thus given a table and symbol, 
table-get gives us back either a nil to indicate no 

binding for that symbol was present, or the actual binding. We 
have a way of putting things into the table, table-put!, 

and we have binding-value which when given a binding, 
returns the value part of that pairing. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

What is the point of this? We can simply assume that this table abstraction exists, and then we can build an 
environment. Let's define environment in our underlying Scheme to be a table, and then we can create 

procedures for lookup and eval-define. 

Slide 15.3.6 
Looking up the value of a symbol is simply a matter of 
manipulating the table. We find the binding in the table for this 
symbol, and then return that value part of the binding. This is 
simply manipulating the environment and we can abstract that 
away. 

Slide 15.3.7 
The real thing we have added is a way of dealing with a new 
kind of expression, something built by define* that is 

creating a binding of a name and a value. So what should this 
do? 
This procedure says to walk the tree structure to get out the 
name (remember this is just walking the tree structure, there is 
no evaluation going on here). Then, evaluate the expression 
that will provide the value of the binding. Notice the use of 
eval which recursively returns to the top level, and evaluates 

this expression using the same rules! Once I get a value, I stick 
it into the table that represents the environment, paired with the 
name in a binding. 

Slide 15.3.8 
Since we have added a new component to our evaluator, let's 
again look at what happens if we evaluate these two expressions 
in our evaluator, especially watching to see what is returned 
each time we recursively call eval in this process. So keep 

track of the argument and return values of eval as we trace 

through this process, using the code handout to keep track of 
this process. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.3.9 
So let's use our extended evaluator, by evaluating this 
define* expression. Remember that this expression is just 

represented as tree structure, the ' is just used here to remind 

that the parser will have reduced this input expression to the 
equivalent tree structure. So what does eval do with this 

expression? It is a dispatch, so it will deduce that this is a 
define* expression, and will thus send the expression to a 

handler. That procedure will decide to eval the value 

subexpression. 

Slide 15.3.10 
Well that is a lot like what we saw before! We are now doing an 
eval on this list structure. And we have literally walked 

down the list structure for the first expression to grab off this 
piece and now evaluate it. This just recursively determines the 
type of expression (a sum) and thus passes it off to eval­
sum which evaluates each of the subexpressions in turn, then 

applies the primitive + operation to return a value (9). So the 

value returned by evaluating this subexpression is just 9. 

Slide 15.3.11 
And then what does eval-define say to do (remember 

this is where we were when we went off to evaluate the 
subexpression). It simply takes the name (or symbol) x*, 

grabbing that off of the tree structure, it takes the returned 
value, and it binds them together in the table somewhere. 

Slide 15.3.12 
And having done its work, it just returns the symbol 
undefined to tell us it has completed the evaluation of 

this definition. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.3.13 
So now let's evaluate an expression that includes one of these 
names, such as the expression shown. As before, this expression 
is converted to tree structure, which is then evaluated. The tag 
checking dispatches this to eval-sum. That procedure says 

to add together (using +) whatever I get by recursively 

evaluating the subpieces. 

First is (eval x*). Notice in line 9 of evaluator that 


because this part of the tree structure is a symbol, we do a 

lookup. That is, we use the table abstraction to get the 

binding associated with this symbol, and returns the value 
associated with that binding in the table, in this case 9. The rest 

of the evaluation proceeds as in previous cases. 

Slide 15.3.14 
So in fact this was fairly straightforward. As long as we have 
the abstraction of the table, we see how we can add bindings to 
it, through definitions. Notice also how just walking the tree 
structure of the expression allows us to grab off symbols 
without evaluating them, in this case, getting x* so that we 

could bind it together with a value in the table. Other than that, 
all the other things still hold for our evaluator, we can simply 
now give names to values. 

Slide 15.3.15 
Having now extended our evaluator by adding in this new 
capability, let's step back and extract some key messages. First 
of all, notice that we added two new dispatch clauses to our 
evaluator. One of them just dispatches to eval-define 
using standard type checking of tags. The other clause, 
however, relies on using symbol?, the underlying Scheme 

function, to check for a name. Why is this reasonable? 
Note that we are relying on the underlying Scheme reader to 
convert things into a parse tree, and in particular, that reader 
will convert sequences of characters like x * into symbols in 

the parse tree, which then gets passed on to eval. Thus, 

eval will get a structure that can be handled by symbol?. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.3.16 
Note the second thing we added, a table. Or rather, we added an 
abstract data type of a table to represent our environments. Note 
that we could have used any implementation of a table. We are 
not relying in any way on the specifics on a table 
implementation, and that is exactly the point. As long as we 
have a way of creating tables, we can build an evaluator that 
simply manipulates them. 

Slide 15.3.17 
A key thing to note as well is that we have now added a special 
form to our little evaluator! If you think carefully about it, you 
will note that prior to this we were simply evaluating normal 
combinations, which for this language were sums of two 
arguments. However, eval-define does something 

different. It recursively evaluates only the second 
subexpression! In other words, eval-define takes the 

first subtree of the parse tree passed in, without evaluation, and 
treats it as a symbol. It only does evaluation on the second 
subtree. 

6.001 Notes: Section 15.4 

Slide 15.4.1 
What else can we add to our evaluator? To this point, we have 
no way of making decisions. We can't branch to do different 
things depending on a value. So let's extend our evaluator to 
handle this, i.e. let's extend our calculator to handle conditions 
and ifs: Statements such as the example shown, in which if 
something is true we want to do one thing, otherwise we want 
to do something else. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.4.2 
We can already see from our example that we are going to need 
to add two kinds of things. First, we will need procedures that 
return Boolean values. Thus, greater* should evaluate a 

pair of expressions, then return true if the value of the first 

expression is larger than the value of the second expression. Of 
course, we can easily imaging adding other such expression to 
our language, so long as we have some expressions that 
evaluate expressions and return Boolean values. 
The second thing we will need is an operation that lets us 
control the branching of our code. We know that this should be 
a special form in which we should first evaluate the first 
subexpression, check its value, and then based on that value 

either evaluate and return the second subexpression or evaluate and return the third subexpression. This means we 
need to add an if* expression to our language. 

Slide 15.4.3 
As before, there is a fair amount of code here, but we have 
highlighted the changes from the earlier version. First, we need 
two new ways of dispatching on greater* and if* 
expressions, just using type checking as before. This means we 
need ways of checking the type of such expressions, and we 
need to add dispatch clauses to the cond expression inside 

eval, one for each new type of expression. This is just like 

before. 

Slide 15.4.4 
First, greater* expressions. Remember that exp will be 

a pointer to some tree structure that has been created by the 
parser. The first subexpression in that tree structure will be the 
symbol greater*. The second subexpression will be some 

other expression, as will the third subexpression. Our plan is to 
get the values of the second and third subexpressions. We will 
use tree operations to extract the right pieces, the recursively 
evaluate them. Once we have the values of these 

subexpressions, we can use the underlying Scheme primitive 
operation to compare the numerical values and return a Boolean 
answer. 

This may seem a little odd; why not use Scheme's operation directly? Remember, our goal is to understand how to 
connect the evaluator to built-in primitives, and to allow for alternative ways of executing operations. So remember 
what we do, we walk the tree, grab the pieces, recursively evaluate them, then pass the pieces on to primitive 
procedures to complete the reduction to a value. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.4.5 
What about if* expressions? What happens when we 


dispatch to eval-if? 


Once more, remember that what is passed in to this procedure is 

tree structure, created by the parser. This tree structure will 
several pieces: the tag if*; then tree structure representing the 

predicate of the expression; then tree structure representing the 
consequent of the expression; then tree structure representing 
the alternative of the expression. Notice how in our procedure 
we use list manipulation to pull off each piece of the tree, and 
then we evaluate the first one. 
Once we have the value of test, we can then use the 

underlying primitive mechanism for branching, cond, to decide that if test is true, then and only then, 

take the consequent and evaluate it. If test is false, then and only then, take the alternative and evaluate it. 

Notice the order in which things are done. This is a special form in which we first evaluate the predicate. 
Depending on that value, we either evaluate the consequent or the alternative, and return that value as the value of 
the overall expression. 

Slide 15.4.6 
So having added these two new expressions to our evaluator, 
let's look at some examples of evaluation using them, as shown 
on the slide, tracing through the process of recursively using 
eval. 

Slide 15.4.7 
We can assume that we have done the evaluation of 
(define* y* 9), since we know what that does. Now 

let's look at evaluating the if* expression. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.4.8 
The first thing eval does is check this expression. Is it a 

number? Is it a sum? Is it a symbol? Is it a define? Is it a 
greater? Is it an if? In other words, it checks the tag on the 
expression, eventually determining that this is an if* 
expression. Thus it dispatches the expression to eval-if. If 

you look at the code handout, you will see that eval-if 
first walks down the tree structure and pulls out the predicate 
expression. It then evaluates that piece, as shown. 

Slide 15.4.9 
Depending on what value is returned by evaluating that first 
piece, the evaluator will either walk the tree structure to get out 
the consequent piece or the alternative piece, and it will 
evaluate that piece. Thus, this special form will first evaluate 
one piece, and then branch to an evaluation of one of the other 
two pieces, but only one of them. 

Slide 15.4.10 
Then we can just step through the stages. The first stage 
evaluates the full expression. This dispatches to eval-if, 

which evaluates the first subexpression in the tree structure. 
That does a second dispatch to the procedure that handles 
greater* expressions. Here we walk further down the tree 

to get the subexpressions to this procedure, and recursively 
evaluate them. Having returned values (one by lookup, the 
other as a number), we actually apply the primitive comparison 
operator, and since the returned value is true we then extract 

the appropriate piece of the tree (the consequent) and we 
evaluate that piece. This just becomes a dispatch like the 

previous cases, and you can see the recursive calls to eval used to get the values of the subexpressions before 

the application of the primitive procedure. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.4.11 
Once more, let's step back and extract some messages from this 

exercise. 

Note that eval-greater is really just like eval­

sum. Both recursively call eval on the arguments, then 


apply a primitive procedure to the resulting values. 


Slide 15.4.12 
On the other hand, our conditional, eval-if, behaved 

differently. It is a special form. Rather than evaluating all of its 
arguments, it only evaluates some of them, and in a particular 
order, as shown on the slide. 

6.001 Notes: Section 15.5 

Slide 15.5.1 
In the last example, when we introduced a new kind of 
expression into our evaluator, we had to add a new dispatch into 
eval. We created a new type checker for the expression, and 

then we added a new clause to the cond to dispatch off to a 

procedure to handle this kind of expression. 
That's okay with a small number of things, but we would like to 
add lots of operators, for multiplication, exponentiation, less 
than, and so on. How can we add lots of operators to our 
evaluator but still keep eval compact, and more importantly 

easy for us to extend later? 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.5.2 
We have already hinted at how to do this. We have noted that 
operations like plus* and greater* are quite similar. 

They evaluate all their arguments, and then they perform a 
particular operation on the resulting values. That sounds like a 
common pattern, so we would like to capture that pattern and 
take advantage of that abstraction. 

Slide 15.5.3 
In particular, we will call this standard pattern an application. 
It is an application of a particular operator to a set of arguments. 
We can therefore implement a single case in our evaluator for 
all applications: just one way of dispatching. That will allow us 
to easily extend other operations to our evaluator, by simply 
creating the operation and having the same dispatch handle the 
application. 

Slide 15.5.4 
Here is our plan for accomplishing this. We will now first 
evaluate the first subexpression of an application. Note that in 
the previous cases we did not do this, we used the name to 
dispatch in eval to the right primitive procedure. Now we 

will evaluate the first subexpression to deduce the operation to 
apply. But that means we have to have a way of getting access 
to the appropriate operation, so we will put a name in the 
environment for each operation that we want to treat as an 
application. The value of that name will be a procedure and 
then we can simply apply the procedure to the values of the 
other subexpressions. How can we make this extension to our 

evaluator? 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.5.5 
As with the previous cases, we suggest that you look at a 
printout of the code as we walk through this exposition. As 
before, we will try highlighting the changes we make to our 
existing evaluator, as we evolve to handle new kinds of 
expressions. 
First, we need a way of detecting an application, and we are 
going to simply rely on the expression being a pair, that is, if it 
is a combination, then it is an application. But if we are going to 
assume that, then in our dispatch cases inside eval, 

applications had best be things we do after we check for the 
special kinds of things. And thus we can see a form evolving. In 
eval we first check for the primitives (numbers and 

symbols), and then we consider compound expressions and check for any that are special forms (things that do not 
obey the normal rules for evaluation, such as define* and if*). Finally, we check for applications, that is, 


we make sure we do have a compound expression, in which case we treat it as an application. Notice that we can 

now drop the special checks for greater* and similar operations, since they will now be caught by the 


application case. 

Notice what we do if we have an application. Remember that the input is one of those tree structures representing 

the expression. We grab the first element of the tree and evaluate it. That should give us a procedure. We then 

walk down all the remaining elements of the tree and we will map eval down that list. We are just treating 


map as a primitive here, so that it applies eval to each element of that list and create a new list of the resulting 


values. 

Then we will apply that procedure value to that list of arguments. 


Slide 15.5.6 
We know that recursively eval should do the right thing. If 

our expression is an application of a named procedure to some 
arguments, it will lookup the value of the name, which 
presumably is attached to some procedure in the environment. 
Similarly, mapping eval down the list of other expressions 

will return a list of values. Now, how do we do an application? 
Conceptually, apply says: check to see if the operator, the first 
subexpression, is a primitive, that is, one of the things built into 
my simple calculator (e.g. greater*, plus*). If it is, then get the 
corresponding primitive and apply it to the arguments, that is 
just do the normal Scheme thing to this primitive application. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.5.7 
So to use this, I simply need to create primitive operators, and I 
can do that with an abstract data type that stores away 
underlying procedures (basic things we are inheriting from 
Scheme) into a structure. We will make a primitive object by 
taking an underlying procedure, tagging it, so that I can check 
tags to find primitives and get out the actual procedure from the 
data abstraction. 

Slide 15.5.8 
Remember that we have an environment, a little table 
abstraction that contains bindings for things, so initially, before 
I start using my evaluator, I can establish in that environment 
some built in primitives. For example, I can put in a built in 
primitive for plus* and one for greater*, and one for 

the symbol true*, which is bound to the machine 

representation for the Boolean value of true. 
This should start looking familiar to you. Note that we are 
setting up an environment that contains bindings of built in 
names to built in primitive procedures. We also have for those 
procedures a way of tagging them to tell that they are 

procedures we have created. Then our evaluator is going to be able to use those built in primitives to execute the 
application of a procedure to some arguments. 

Slide 15.5.9 
Okay, let's check it out. Let's evaluate the three shown 
expressions in order in our little evaluator. This will check both 
application and special forms in our new evaluator. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.5.10 
First, what does our environment look like? It is just an abstract 
data type of a table, containing names and values. This will 
include a binding of z* to 9 which we know comes from 

evaluating the define* expression. We also have a binding 

for true*, since that was one of the built in definitions. We 

also established bindings for names to representations of some 
primitive procedures. 

Slide 15.5.11 
So let's step through the stages of evaluation of a simple 
expression. As before, keep the code handy to follow along. We 
start with the evaluation of the tree structure associated with 
(plus* 9 6), the ' is just use to remind us that this is 

tree structure along which we are walking. Eval steps 

through a big dispatch checking the type of this expression 
against each of its cases. Having decided it is not one of the 
explicit things about which it knows, it checks that it is a 
compound procedure, and since this is, eval assumes we 

have an application. 

Slide 15.5.12 
So eval unwinds this into an application of whatever we get 

by evaluating the first part of the tree to the list of the 
evaluation of the remaining parts of the tree. Notice how we are 
just walking through the tree, grabbing the pieces, and 
recursively evaluating each one in turn. 

Slide 15.5.13 
So what happens with the eval of the symbol plus*? 

Again, eval walks through each of its cases, checking the 

type of this expression against those cases. It decides this is a 
symbol, so it just does a look up in the environment. This just 
returns the representation associated with that name, in this case 
a tagged list, as shown. We now have the value of the operator. 
We can move on to mapping eval down the list of other 

pieces, which we know turns into a list of applying eval to 

each piece in turn. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.5.14 
And of course we have seen what this does. For each 
expression, eval checks the type of the expression, decides it 

is a number, and just returns that expression as the value. This 
results in a list of the values 9 and 6. 
Notice the form we now have: an application of a representation 
of a primitive procedure to a list of values. So we can now do 
the apply. 

Slide 15.5.15 
Apply first checks the argument to make sure it is a 

primitive. Since this one does have the right tag, it can reduce 
this to the underlying Scheme application of the procedure 
associated with addition to the values. And that just reduces to 
... 

Slide 15.5.16 
...this case. We just have a Scheme application of one of its 
primitive procedures to a list of values. Notice what we have 
done. We have reduced evaluation of an expression to an 
application of a procedure to a set of values, where we have 
recursively evaluated each subexpression to get that procedure 
and list of arguments. If the arguments were themselves 
combinations, we would have done the same process 
recursively on each of them, continually unwinding the 
evaluation down to an application, in this case of addition to 
some values ... 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.5.17 
... returning the value we expect. The key thing to see here is 
the evolution of evaluation of a combination reducing to 
application of a procedure to a set of values. 

Slide 15.5.18 
That example demonstrates that our normal procedure 
applications now work. Let's make sure that special forms still 
work, by considering the example of an if* expression. 

Of course we get the behavior we expect. Given the tree 
structure associated with this expression, eval checks each 

case in its set of possibilities, checking the type of expression 
until it deduces that this is an if* expression. In this case, it 

dispatches off to a procedure designed to handle such 
expressions. Note that it reaches this case before it gets to 
normal applications. 

Slide 15.5.19 
That reduces to using the special procedure eval-if on 

this expression, and check the code to remind yourself what 
eval-if does. 

Slide 15.5.20 
Eval-if first evaluates the predicate. It takes the 

expression, walks down the tree structure, pulls off the first 
subexpression, and evaluates it. We will temporarily give the 
result the name test. Key point is that we only evaluate this first 
subexpression, before we look at anything else. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.5.21 
Eval on this expression again walks through its cases, 

decides this is a symbol, and does a look up on it. It goes into 
the environment, finds the binding of this symbol in that table 
abstraction, and returns the binding, in this case the underlying 
representation for the Boolean value of true. 

Slide 15.5.22 
Having now obtained the value for this lookup, we can now 
proceed to the conditional expression. Thus, based on the value, 
it walks through the rest of the tree structure representing the 
expression, and grabs the appropriate piece. 

Slide 15.5.23 
and this reduces to simply evaluating this piece of the 
expression tree, and will return the value of this expression as 
the value of the overall if* expression. Because this is a 

number, this is self-evaluating and returns ... 

Slide 15.5.24 
...just the expression itself. 
Key thing to notice is how eval of an if* has walked 

through the tree structure representing the expression, in a 
particular order, and it has reduced the evaluation of that 
expression to the evaluation of one of the subexpressions. 
Also notice how we did not walk through all of the tree 
evaluating all of the pieces. We only evaluated "on demand", 
which is very different than an application. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 15.5.25 
In fact, notice that apply is never called here. We only do 

evaluation of pieces of the expression. Of course if one of those 
pieces had been an application we would have used apply 
but in terms of the parts of if* we never used apply. 

If* is a special form that handles evaluation of subpieces in a 

particular order, but never relies on an application of a 
procedure since it is not a procedure application. 

Slide 15.5.26 
Once more, let's step back from our example and extract some 
key observations. We have now extended our evaluator to 
include applications, which means we can create other kinds of 
expressions. But to do this, we must have applications be the 
last thing considered as an option in eval. We are not 

checking tags for applications, we are simply relying on the fact 
that is something is not one of the known special forms, it must 
be an application. 
Also notice the form of eval, in which we first check for 

primitives, then for special forms, then for applications. 

Slide 15.5.27 
And as we just said, we never used apply in the last 

example. Applications evaluate all of their arguments before 
proceeding. Special forms handle things in a different order, 
exactly to control when arguments are evaluated. 
So now we have seen a basic way of structuring an evaluator. 
We have primitive expressions, primitive means of 
combination, primitive conditionals, and primitive means of 
application, which enable creation of other expressions. Next 
time, we will look at further extending our evaluator. 


	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved




