
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

6.001 Notes: Section 13.1

Slide 13.1.1
In this lecture, we are going to look at a very different style of
creating large systems, a style called object oriented
programming. This style focuses on breaking systems up in a
different manner than those we have seen before. To set the
stage for this, we are first going to return to the notion of
abstractions, and use that idea to see how we can capture
objects with some internal state that reflects the status of those
objects. We are going to be led from there to a style of
programming called message-passing in which we treat
systems as if they consist of large collections of objects that
communicate with one another to cause computation to take
place.

Slide 13.1.2
Let's start by going back and thinking about the tools we have
developed for thinking about computation. Two of the key tools
we have developed dealt with abstractions.
We have seen procedural abstractions. Here the idea is to
capture a common pattern of processing into a procedure, then
isolate the details of the computation from the use of the
computation, by simply naming the procedure and using that
name with appropriate conditions on the procedure's input. We
saw that this style of approach is particularly useful when
dealing with problems that are easily addressed in a functional
programming approach, that is, where we can treat the

procedures as generalized mathematical functions, meaning that
their output for a given input will be the same whenever we evaluate it.
We have also seen data abstractions. Here the idea is to modularize our system by creating data structures that
capture key parts of the information we need to handle. The goal is to hide the details of the representation and
storage of the data behind standard interfaces, primarily our constructors and selectors. This means the user can
then manipulate data objects without having to worry about details of how they are maintained.
As you might expect, often the data abstractions and the procedural abstractions work hand-in-hand, with the
procedures used to manipulate the data using the data abstraction interfaces, and with the structure of the
procedures tending to mirror the actual structure of the data.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.1.3
The goal in each case is actually the same: we want to hide
details of the abstraction so that we can treat complex things as
if they are primitive units. In the case of procedural
abstractions, we want to hide the details of the computation,
and treat the procedure as a primitive computational unit. In the
case of data abstractions, we want to hide the details of how
components are glued together, and treat each unit as an
abstract collection of parts.

Slide 13.1.4
Given that we want to use abstractions as a tool in controlling
complexity in large systems, there are several questions that
come up when thinking about how to use abstractions. The first
is: what is the best way to break a new problem area up into a
set of modules? Both data modules and procedure modules? As
we have already seen in earlier lectures, some problems break
up in multiple ways, and breaking them up in different ways
makes some processes easier and others harder. So a key
question is: How do I use the idea of abstraction to break
systems into modules and what’s the best way to do this?
The second question deals with how easy it is to extend the

system. If I want to add new data types to my system, is that
easy? If I want to add new methods to my system, new ways of manipulating data types, is that easy? We have
seen several examples of this already, we are now going to return to these questions in order to lead to a very
different way of breaking systems up into convenient sized chunks.

Slide 13.1.5
Let's start by going back to data objects and data abstractions.

Here is the traditional way of looking at data, at least as we

have done things so far.

First, we build some complex data structure out of primitives,

for example, cons cells or pairs. Second, we use tags to

identify the type of structure being represented. This tells us

how to interpret the different slots in the list structure. For

example, is the car of the list structure the name of a person

or his batting average or his GPA?

Then, the data abstraction is actually built by creating a set of

procedures that operate on the data. These are procedures that

take in instances of the data, use selectors to get out the pieces, do some manipulation to create new pieces, and

then use the constructor to re-glue the abstraction back together. This led to the concept of data-directed

programming, which we saw earlier. We use the tag to determine the right set of procedures to apply. And this

allows the user to program in a generic fashion. They can focus on what they want to do, but have the code direct

the data to the right place for the actual work.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.1.6
Here is a simple example to illustrate this point. Suppose I have
a set of different geometric objects, things like numbers, lines,
shapes, and I want to write a procedure, or an operation, that
will scale each of those objects by some amount. Then a
generic operation, under the data-directed approach would look
like this procedure shown here. Given an object and my desired
scale factor, I use the type of the object to dispatch: if it is a
number, I just multiply; if it is a line, I ship it to the procedure
that will scale a line, and so on.
The point of this example is that I think about things in terms of
the kinds of objects I have and procedures for manipulating
each distinct object type. I use the tag or the type of the object

to tell me which procedure to send the object to.

Slide 13.1.7
So now let's go back to our questions. How easy is it to extend
such a system, a system where we are breaking things up into
tagged data, and using data directed programming? First, if we
add a new data type to our system, what do we have to do?
Well we can see from our example that we will have to all the
procedures like scale, to add a new clause to each cond,

dispatching on that new type of object. As a consequence, if
there are many such procedures, we have a lot of changes to
make, both a great deal of code to write, and more importantly
making sure that we change all the relevant procedures.
If we add a new operation or method, what do we need to do?
This is easier, as we just need to develop a subprocedure for each type of object to which the method will apply.
Thus in this style of programming, adding a new data type is painful, while adding a new method is reasonable. As
a consequence, this approach to modularizing systems works best when there are only a few data abstractions or
when the changes are mostly new methods or operations, or when the different kinds of data structures in the
system are mostly independent of one another. In those cases, this style of approach works well. But not everything
fits these cases. What should we do in those cases?

Slide 13.1.8
So let's step back from this organization for a second. One way
to think about structuring a large system is to realize that we are
likely to have a large number of different data objects (or
instances of data abstractions), and a large number of
operations we want to perform on those objects. Conceptually,
this means we have a big table, where we can use a different
row for each operation we want to perform, and a different
column for each kind of data abstraction we have. Then at each
element in this table, we can conceptualize having a specific
procedure, intended to perform the particular operation (e.g.
scaling) on the particular kind of data object (e.g. a number).

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.1.9
One way of actually building such a system is to focus on the
rows of the table, that is the operations. Indeed, our use of
tagged data was based around this viewpoint, in which we
created generic operations that handle the same operation for
different data objects, and used the tag on the data object to
dispatch to the appropriate version of the procedure to handle
that kind of data.

Slide 13.1.10
But given this table, there is an alternative possible
organization, which is around the columns of the table. This
would focus on creating a generic data object that would know
how to handle different operations on that kind of data
structure.

Slide 13.1.11
Let's step back and rethink data. This sounds like an odd thing
to do but let's think about data in a very different way. Rather
than thinking of data abstractions as some slots into which we
can put things, let's instead consider data to be a procedure with
some internal state.
This sounds strange! But, what is a procedure? It really has two
parts: it has a set of parameters and a body which define the
pattern of computation to perform as a function of the objects
passed in; and as we saw in the environment model, it has an
associated environment which can hold name-value bindings,
that is, pairings of names and values.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.1.12
So what, you say! Well, we can use this idea to capture
information about a data structure. In particular, we can use a
procedure to represent data objects with state. What would that
mean? It would say that we could use the local environment of
the procedure plus its parameters to hold the values of the
datum, and we could create local procedures within the data
procedure to manipulate these values, to change the state of the
object.
This means that the only access to the values of the data object
will be through the procedure representing the data. This would
nicely encapsulate the data structure inside this procedure.
This probably still sounds odd so let's look at a specific

example.

6.001 Notes: Section 13.2

Slide 13.2.1
To illustrate this idea of using a procedure to represent a data
structure, an object with state, let's look at the following, rather
odd, example. Here is a very different way of implementing a
cons cell or a pair. Let me stress that this is not the way that

Scheme normally represents pairs. Of course, the idea of data
abstraction is that the actual implementation of a data structure
should be irrelevant to the user. This example is used to drive
home a conceptual point.
Here, we have implemented a pair as a procedure! Thus our
fundamental data structure is now a procedure rather than some
storage in memory slots.

Slide 13.2.2
Look at this carefully. First, note that cons, as defined here,

involves two lambdas. Remember that there is a hidden
lambda inside the syntactic sugar of this definition. This

means that there is a second lambda as the body of the

cons and thus when we evaluate (cons x y) using

this particular implementation, we get back as a value, a
procedure of one parameter, msg.

So what does this say? It says that when we use cons with

this implementation our representation for our fundamental way
of gluing things together is now a procedure of one argument.

So what would that cons thing do? Since it is a procedure, if we send it a value, or if we apply the procedure to

a single argument, note what it does. It uses the value of the argument, in this case a particular symbol, to decide

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

what value to return.

We call this style of programming, message passing, because the procedure accepts a message as input, and then

does something based on the value of that message.

Slide 13.2.3
This looks a bit weird! Our constructor for gluing things
together gives us a procedure as the actual object. Should we
care?
Of course we know that we shouldn't care. To complete the
abstraction for a pair, we simply need to create car and cdr
to fulfill the contract of the abstraction of a pair.
Each of those is itself a procedure that takes as input a pair,
which we know is a procedure, and then applies that procedure
to a single argument, which in this case is just a symbolic
message. Ideally, that message should get back for us the value
we need to satisfy the contract. If we look at this definition for
car, we see it takes as input one of these new pairs, and then applies that pair (a procedure) to the symbol car,
which in principle should return for us the value we used when we created the pair.

Note the other procedure we built here. Our predicate for testing whether something is a pair now relies on the pair
identifying itself. This is the version of our tag. Before we attached a tag as a symbol on a data structure. Here, our
tags are part of the procedure.

Slide 13.2.4
To check it out, let's take this strange implementation of pairs
and verify that this implementation satisfies the contract for a
pair.

Slide 13.2.5
To test this, lets cons together the numbers 1 and 2, and give the
resulting pair the name foo.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.2.6
So here is an environment diagram that would represent the
state of the world, before we do this definition. In the global
environment, we would have a binding for cons as a

procedure, based on the previous slide.

Slide 13.2.7
What happens when we evaluate this expression? Since cons
is just a procedure, evaluating (cons 1 2) says to apply

the procedure associated with cons to the arguments 1 and 2.

Thus, we drop a frame, scope it by the environment pointer of
the procedure, bind the formal parameters (x and y) of the

procedure to the values of the arguments, and relative to that
new frame, and evaluate the body of the procedure. That body
is itself a lambda! So it makes a new procedure object,

whose environment pointer points to the frame E1 because that
is where the lambda was evaluated. Then, the procedure

object is returned as the value of the cons. Finally, the define binds foo in the global environment to this

returned value, this procedure object.

Slide 13.2.8
Notice what this does. It gives us an object in this environment,
where by object I mean the thing enclosed in red, which is a
procedure that has a local frame with some bindings or values
within it. Thus, x being bound to 1, and y being bound to 2

constitutes local state information. That frame is scoped by the
global environment, and the procedure that points to all of this
is referred to by a name in the global environment. Thus, from
the perspective of a user interacting at the global environment,
foo refers to a structure that has within it information about

what is the first part of the object (1) and what is the second
part of the object (2). It should also have information about how

to extract those values from the structure.
So this pattern: of a procedure that accepts messages, has access to a local frame with state and methods to extract
that local state; is a very common pattern that we are going to use a lot.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.2.9
Now all we have to do is check that the contract holds for this
data abstraction. In doing so, we will see how this structure of a
procedure with access to local state captures exactly the
behavior we want.
To check this, lets evaluate (car foo). We know that this

should get converted into (foo 'car), so how does this

happen?

Slide 13.2.10
Evaluating (car foo) in the global environment simply

applies the procedure that is the value associated with car to

the value of foo which is the procedure object shown. Now

the definition of car shows that this reduces to evaluating the

body of car namely (foo 'car) with respect to some

new environment.

Slide 13.2.11
... and what does that do? It says to apply the value associated
with foo, which is a procedure, so the standard environment

model says to drop a frame, and scope it by the environment
pointer of foo. This is important as E3 now points to E1.

Inside E3 we bind the parameter msg to the argument car.

Relative to this frame we evaluate the body of the procedure
represented by foo. But that is just a cond clause that looks

at the value of msg and compares it to a set of symbols. In this

case, the cond says to return the value of x with respect to

this frame, which is just 1. This is exactly what I wanted, as it

shows that my contract is satisfied.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.2.12
So what does all this say? Aside from showing that our contract
is fulfilled, that what we glue together using this version of
cons we can get back apart using car or cdr, we have

also seen this common pattern that we can create a data object
represented as a procedure. The procedure has some local state
captured in a frame that is accessible only by that procedure and
it has the ability to accept messages and based on those
messages return information from the local state. So let's see
how to build on that idea.

Slide 13.2.13
In the case we just considered, our procedures for data
structures could return values as a function of input messages.
If we are going to use this idea of message-passing procedures
to represent information, we also need to have ways of
changing the value of the state captured by those procedures. In
our pair example, here is how we would do this.

Slide 13.2.14
Let's add two more messages, or two more ways of dealing with
messages, to our constructor, cons: one for dealing with

mutating the car and one for dealing with mutating the cdr.

Notice that in this case we need something different. If the
cons pair (i.e. one of these procedures) gets the message

set-car! we are going to return a procedure that will

take a new value for the car and change the old value to this

new value.
This is a different behavior from before. Now a message gets us
back a procedure rather than a number.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.2.15
As a consequence, the procedure set-car! must have a

new form. As before, it will take a pair and a new value as
arguments, but now it sends the pair (that procedure) the
message set-car!, which gives us the procedure needed

to change values, and we then apply that procedure to the new
value. You can see that the definition accomplishes exactly this.

Slide 13.2.16
So let's trace this through. Here is a definition for bar to be

the cons of 3 and 4, and here is the global environment in

which we are going to do this.

Slide 13.2.17
When we evaluate this expression we simply get a structure
similar to what we saw before, a binding of bar to a

procedure with some local state. Thus, we have bar as a

message-passing object.

Slide 13.2.18
So now let's mutate this object. Let's change the car part of

this object to be 0. Then evaluating (set-car! bar
0) reduces to evaluating ((bar 'set-car!) 0)
in some other frame. Now how does evaluating this expression
effect the right mutation?

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.2.19
First, we need to get the values of the subexpressions with
respect to this frame. Well bar is bound to a procedure, so we

can apply it to the symbol set-car!. This drops a frame,

scoped by E4 because bar's procedure is also scoped there.

Within that frame we bind msg to the symbol set-car!
and relative to that frame we evaluate the body of the procedure
bar. This will return an expression (lambda (new­
car) (set! x new-car)) to be evaluated with

respect to this frame E6.

Slide 13.2.20
Now here comes the critical point. Remember that we are
evaluating the body of bar with respect to E6, which reduced

to evaluating (lambda (new-car) (set! x
new-car)) with respect to this frame E6.

This, of course, creates a procedure object, whose environment
pointer is scoped by E6 (and this is the crucial point!). Note that
this newly created procedure object will have access to E6 and
by chaining to E4. This procedure object is the value returned
by evaluating (bar 'set-car!).

Slide 13.2.21
... and this is exactly what I want. I now apply this procedure to
the value 0, which is the last part of the original evaluation. By
environment model, I just drop a frame, scoped by E6, binding
new-car to the value 0. Thus E7 is scoped by E6, which in turn
is scoped by E4. Relative to E7, I now evaluate the body of this
procedure that I just created, and that says (set! x new-
car) with respect to E7.

Slide 13.2.22
So now we evaluate that set! expression with respect to E7.

First we find the binding for x, which we get by tracing from

E7 through E6 to E4. Then we find the binding for new-
car which we find in E7, and then change the binding for x
in E4 to this new value.
Notice how we have now mutated a value in the local state
associated with bar. Thus our procedures can not only

capture local state information, they can also supply procedures
for changing local state.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.2.23
This is certainly different from our earlier data abstractions.
Now we have data objects that are actually procedures. A cons
pair is now a procedure, and car or cdr is something that

operates on a procedure. But as we have seen, the cons,
car, cdr we just built satisfy the data abstraction

contract, and therefore behave as expected. The key new thing
we have is a procedure that represents data, and takes messages
as input and returns either data values or procedures for
changing data values. This is a very handy idea, so let's
generalize it.
Let's create private state variables (as we did earlier) but also
private procedures that will belong to each instance of the data abstraction.

Slide 13.2.24
Notice the difference in this version. Now I create internal
procedures (change-car, change-cdr) but

inside of my actual object, I not only create those procedures, I

use them inside the object. This has a nice effect in that when I

execute some operation on an object, I don't have to remember

what type of value is returned by the object (e.g. number versus

procedure). In all cases, the use of the data object is identical.

Thus now our selectors and mutators perform in a uniform

manner.

Before, we had to remember whether the object returned a

value or a procedure, in order to complete our manipulation.

Here, the selectors and mutators just send a message to the object and within the implementation of the object, we

take care of the necessary work to either apply an internal procedure or to simply return a value.

Notice that by defining the internal procedures within the context of the cons we will create procedures that are

scoped within the created by calling the cons. Thus, these procedures will belong only to this instance of the

data object.

By making a uniform interface for mutators and selectors we have introduced one other thing into our system. In

particular we now need our selectors and mutators to deal with different numbers of arguments, and yet we would

like our data abstraction to be a single procedure. So we need a way of letting a lambda specify that it wants to

take an arbitrary number of arguments. That is the "funny" notation you see of (lambda (msg .

args) body), which we deal with on the next slide.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.2.25
Up until now, every procedure you have written has required
that you specify names of all the input parameters, and as you
have seen, if you call the procedure with the wrong number of
arguments it causes an error. We would like a mechanism that
lets a procedure take an arbitrary number of arguments, such as
you have already seen with built-in procedures like +.

Slide 13.2.26
So Scheme provides a way of doing this. To see this, let's
define (add x y . rest) to be a procedure that is

going to add a bunch of things. Here, the syntax is an argument
x an argument y and then a dot (.) and then the argument

rest. And the behavior is as follows: If we apply add to a

set of arguments, the value of the first argument will be bound
to the variable x, the value of the second argument will be

bound to the variable y and the values of the any other

arguments will be bound, as a list to the variable rest.

Thus if we evaluate (add 1 2) then x is bound to 1, y is

bound to 2, and rest is bound to an empty list. If we try to evaluate (add 1) we will get an error, because

in this format, the first two arguments are required, i.e. we must have something for both x and y. But if we

evaluate (add 1 2 3), then x will be bound to 1, y will be bound to 2, and rest will be bound to the list

(3). And if we evaluate (add 1 2 3 4 5) in this case rest will be bound to the list (3 4 5).

Thus in this notation, all of the parameters prior to the dot must have a value passed in, the parameter after the dot
will be bound to the list of the values of all the remaining arguments.

Slide 13.2.27
If we come back to our example, we see that if we just take the
car of a pair, msg will be bound to the symbol car, and

rest will be bound to the empty list. On the other hand, if we

want to mutate the car of a pair, then msg will be bound to the

symbol set-car!, and args will be bound to the list of

one value, the new value to be used. Within the procedure that
defines the cons, notice what happens. If we are going to

execute a set-car!, we apply the internal procedure

change-car to the first value in the list args. In other

words, it will extract the right value to use, and cause the
appropriate change, it will mutate the binding of x to be that new value. And thus we can apply these internal

procedures to the appropriate values, while preserving a uniform external interface.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.2.28
Since we have been throwing a lot of details at you, let's step
back for a moment. What we have now seen is a method, using
a particular example to illustrate, for creating a procedure that
captures local state. This procedure takes in a message, and
based on that message and possibly some other arguments,
either returns values based on the local state or it causes
changes in that local state.
This new method, this idea of a message passing procedure,
let's us capture information about a data structure inside a
procedure itself.

Slide 13.2.29
So what does this say? We have introduced the basic idea of a
new style for approaching computational systems. Our
traditional style is procedural programming: we organize the
system around the procedures that operate on the data. The key
is that we isolate the data in standard list-like structures, with
tags, then focus on thinking about what methods or procedures
we want to use to manipulate the values within those structures.

Slide 13.2.30
Here we have shown the basis for a new approach, which is
oriented around the data objects themselves. Note what we did
with our example of a pair. We focused on capturing the
information within a structure, where the operations to
manipulate the data were associated directly with that structure.
More importantly, the basic conceptual unit was the data object
itself. What messages should an object handle? What operations
should an object support? How should we capture those
methods internally within the object?

Slide 13.2.31
So which approach is better? It depends on the problem
domain! Procedural methods are very good when we are
dealing with things like numerical operations or when we are
dealing with systems with very small numbers of data
structures.
On the other hand, object oriented systems are very good for
things like simulations or for systems with large numbers of
objects, where the objects are characterized by a small amount
of state information and the computation basically involves
interaction between the objects, causing that state to change.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

6.001 Notes: Section 13.3

Slide 13.3.1
We have seen lots of examples of the first style of programming

in the first part of the course. Now we are going to spend some

time exploring the second style. What does it mean to create an

object-oriented system?

To discuss this, we need some terminology: In an object-

oriented system, we will talk about a class and an instance. A

class captures a set of objects, with common behavior. For

instance, cons in our previous example was a class. By

convention, to use a class we will have a maker procedure that

creates instances of this class.

An instance will be a particular and specific version of a class.

For example, foo or bar in our earlier examples were instances of the cons class. An instance takes

messages in the manner defined by the maker procedure and uses them to manipulate the particular values of the
instance. So we expect as a consequence to have lots of instances of a particular class in our system.

Slide 13.3.2
So here is a good way to conceptualize these ideas, and in
particular the differences between them. Associated with a class
will be a class diagram. This contains information such as the
name of the class (pair), the private state that belongs to the

class (x and y), as well as what public messages are

recognized by this class (car, cdr, pair?, set-
car! and set-cdr!). Note that these public messages

define the interface to the class of objects. This class diagram
thus captures the relevant information about a class.

Slide 13.3.3
Thus in our earlier example, cons defines a class. Our

previous definition for cons is our particular way of

implementing this class, or constructing elements of this class.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.3.4
And that leads naturally to the idea of an instance. When we
use the maker associated with this class, we create particular
instances of the class, or examples from this class. We can
represent diagrammatically in an instance diagram. Within
that diagram, we will have information about the type of each
instance as well as specific values for the internal state of each
instance. Note that these values could themselves be other
instances of classes.

Slide 13.3.5
So if I define the example expression shown, in my instance
diagram I create two instances of the class pair, both created

by the maker procedure cons. Within each, I have bindings

for, or specific values for, the internal state associated with each
instance. Notice how these bindings can be simple values like
numbers or pointers to other instances of classes.
So we see that a class defines a set of objects and an instance is
a particular version of an object from some class.

Slide 13.3.6
So how do I use the ideas of classes and instances to start
designing a system? Let's suppose, as an example, that I want to
build a simulator for a star wars game: it would have ships that
could fly through space, land on planets, shoot other ships.
I can start by thinking about what kinds of objects do I need?
That will tell me what kinds of class I need and what state
information is needed for a class and what interfaces between
classes are needed. It might say, for example, that I want some
ships. Since ships will need to move, this helps me decide what
kind of state a ship will need.
Thus I begin thinking about the system in terms of what kinds
of objects and what information associated with those objects

do I want. I can then extend this to start thinking about particular instances of objects. How many, what state for

each, and so on.

So let's see how the idea of a class, and instances of a class, can be used to design an object-oriented system.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.3.7
We will use our star wars simulator to explore the use of classes
and instances of classes to build object-oriented systems. The
first class of objects in my system will be ships. So here is a
procedure for making instances of the class of ships. This
maker procedure defines the actual class.

Slide 13.3.8
Given the idea of a ship, I can turn to the question of what
behavior I want for instances of that class. Clearly a ship needs
to be able to move. Note that this then tells me that I will need
some information about where the ship currently lies and how it
is moving, as part of the class definition. In this case, I choose
to pass that information in, when I actually construct the
instance. So this tells me I will need position,
velocity and maybe some other things as inputs to the

class constructor.
Actually, I am cheating here. I know that in order to move, I
need to have that kind of information as part of the class, but in

fact I could have created a constructor with no parameters, and simply have within it a let clause that contained

initial default values for the position and velocity.
Notice how thinking about what I want my objects to do helps me to decide what information should be captured
as local state, and what information should be passed in when I create instances of this class.

Slide 13.3.9
And what about the class itself? When I use this maker
procedure, it will return an instance of a ship, which will be
represented by one of these message-passing lambdas.

Note the form. It takes as input a message, and either returns
information about the state of the ship, or causes one of the
internal procedures to be executed. This looks a lot like the
generalized form we used for our cons pair earlier.

Similarly, we will have internal procedures for manipulating the
data values, very much like our cons example. The only

other thing to note is how the last clause of our message passing
procedure is a bailout clause. It says: if you give me a message

that I don't recognize, I'll let you know so that you don't try to do something you can't.

Thus here is a definition of a class: a maker procedure that creates ships.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.3.10
So let's gather that together in our class diagram. Here is the
class diagram of a ship, based on that definition, including state
variables, and messages for manipulating those state variables.
Those messages now define the interface to instances of this
class.

Slide 13.3.11
Now we can make some instances, as shown. Of course, we are
assuming some abstraction for vectors, which we could easily
define. Note that by using the class's maker procedure, I have
created different instances, each with its own state variables and
its own procedures for manipulating that state information. The
interfaces to these instances are defined as the set of interfaces
from the class definition. Each of these objects will accept the
same set of messages, but case their own internal state to
change.

Slide 13.3.12
To see this, let's use our environment diagram to see how our
simulation evolves. We want to see both how instances are
generically maintained in the system, as well as examining the
details of our particular implementation. Let's evaluate these
three expressions in order, to see how our classes create
instances, and how those instances keep track of state
information, as our simulation moves forward.

Slide 13.3.13
First, we will use our make-ship procedure to create an

instance of the class. Evaluating that first expression creates a
frame, through the application of the procedure, in which the
formal parameters are bound to the values of the arguments
passed in.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.3.14
Having created that frame, we then evaluate the body of the
procedure with respect to it. Note what that does. The internal
definitions cause a binding of a variable in this frame to the
value shown, in particular, move gets bound to a procedure

whose environment pointer points to this frame. Thus, we have
an internal procedure, which will have access to the local state
variables captured in this frame.

Slide 13.3.15
Thus, those two internal defines create bindings for

names in that frame that point to local procedures with access to
the bindings of this frame. Thus this frame contains information
about this instance of the class, the state variables and the local
methods that will be used to change those variables.

Slide 13.3.16
Having evaluated the local defines, we then evaluate the

rest of the body of this constructor, make-ship. That

evaluates that last lambda, creating a procedure object

whose environment pointer also points to this frame, and a
binding for the name in the global environment that points to
this procedure object. Again, we get a message-passing object
with local state and methods for changing the local state.

Slide 13.3.17
Suppose we ask this particular instance of a ship to move. This
says to send the procedure representing this ship the message
move, and we know that this reduces to evaluating the actual

procedure move with respect to this frame. Applying that

procedure creates a frame, even though there are no arguments
to bind, and relative to this frame we evaluate the body of
move. This then says to change the position.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.3.18
And of course evaluating the body of this procedure causes us
to mutate the current value for position. Just as we saw

with our cons example, we have changed the state of our

instance. Thus, if we ask for the position of our object now, we
will get this new value as the answer.
Thus, our local instance of a ship captures within it state
information and procedures to change that state information.
The actual instance object is a procedure that uses messages to
determine what to do.

6.001 Notes: Section 13.4

Slide 13.4.1
The key thing to note is how we can use objects to modularize
our design. Notice in the previous case that we can leave some
methods blank and still test our system, as we can just fill these
methods in when we need them. Also notice how we use the
idea of what things we wanted the object to be able to do to
define what state information we needed, and what methods we
needed to deal with that information. So let's build on this idea
to see what other capabilities we can add, and how thinking
about things in terms of classes of objects and instances of
those classes allows us to easily design interactive systems.

Slide 13.4.2
So what kinds of things could we add to our system?
First, we could add new classes, for example a planet class,
which should have a different behavior from ships.
Second, we forgot to allow for types and tags in our system.
This means we need to add predicate messages and methods so
that objects can identify their type. Note that this arises once I
add more than one kind of object to my system (e.g. with just
ships I might not need it, but once I add planets I have to
distinguish between types of objects).
And we might want a display handler, something that draws the
position of my objects on a screen. This we will see can be
implemented as a procedure, so that not everything needs to be

an object in our system. To do this, we will need to modify our classes so that every object can display itself on

demand.

With this framework for modifying our system, let's see how one goes about extending object-oriented systems.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.4.3
If we add planets to our system, we will have a new class
diagram. In addition to our earlier class, we now have a class
for planets, with some state information and some methods for
manipulating that information. Notice that as part of our design
we add two new things to both this class and our original ship
class: a predicate for testing types, and a method for handling
display.
Now watch how we can add new instances to our system and
how we can easily return to our original design and modify it to
add new components and methods.

Slide 13.4.4
To start, here is our maker procedure for the planet class. Note
that the only local information is position and the

instances will recognize three methods. Here is our first version
of a predicate: the message planet? will return the true

value, to indicate that this object is of that type, hence we have
a new way of tagging objects. And notice how we can add
methods that simply execute a procedure without returning a
value. Here draw is used for the side effect of graphically

displaying the planet.
Note in particular how planet? is defining the equivalent

of a type tag.

Slide 13.4.5
Now that we have seen some simple extensions to our world,
what else can we add? Well, the original motivation for
building this system is to enable large systems of different
kinds of objects to interact. We would like to set up our system
so that we can create a bunch of objects, initialize their state,
and then let the objects interact in a simulation of some
dynamic evolution.
To do this, we just add one new object: a clock. If we then keep
track of everything in our universe of instances, we can have
the clock synchronize the evolution of each object by sending it
a message to update its state, which it will do through its own
local procedure.
And to add some spice to our system, we will let ships shoot at each other, so we will add a new class, a torpedo.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.4.6
If we add torpedoes we need to update our class diagram, and
here it is. Notice that this class shares a lot of common
information with ships, a point to which we will return later.
The top level point to note is how our design is evolving. We
started with a single class, and have now added new classes as
our desires for the system expand. Each class has a set of local
state variables, and methods that it is capable of handling.
The other change to our class diagram is the inclusion of a new
method for each object, the ability to accept a synchronization
signal from the clock, and then update state.
Again, note how our design is evolving. We can add new
classes, and we can extend existing classes by adding new

methods as our desired behaviors for the system demand them.

Slide 13.4.7
We also need a way of coordinating the actions and interactions
of objects in our universe. One way to do this is to use a clock,
which could send a signal to each object to synchronize the
passage of time. For example, a clock tick could cause a ship
to move a small amount, or fire a torpedo, or launch a shuttle.
There are several ways to accomplish this; here is a sketch of
one. Our clock maintains a list of things to do on each tick of
the clock. In particular, it does this by storing, as internal state,
a list of callbacks, that is, messages to send to specific objects
to execute specific actions.
We can then simulate our world by running the clock through a
sequence of ticks. On each tick, the clock walks down its list of
callbacks, and asks each to activate. Intuitively, this means that it asks a set of objects to pass messages to target
objects, like our ships.

Slide 13.4.8
To make this happen, we simply need to create a new object, a
callback. This is simply a new object that stores a target
object, a message and a set of arguments. When activated (by
the clock), it sends the target object the message, which will
cause something to happen in the world. It can be thought of as
a button that executes an action every tick of the clock. The
details are not crucial, what matters is the idea that a single
object, a clock, can control another set of objects, the
callbacks, that synchronize the actions of objects in the
universe.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.4.9
We can also evolve our class definitions. Given that we want to
add some new capabilities to our ships, we return to the maker
procedure and change it. For example, we can add a method to
fire torpedoes, together with methods that update the state
associated with torpedoes. Also note as part of this how we use
a maker to create a torpedo, and adding the torpedo to the
universe will presumably cause the torpedo to send a callback
message to the clock so that the clock can keep track of it.
We also need to allow ships to explode, and notice the form
here. The actual procedure explode takes as argument a

ship, which needs to be removed from the universe. Notice how
to support this we have changed the definition of our message
passing object to use that "dotted" argument notation, so that we can pass in arbitrary numbers of arguments to an
object. We use that here to allow for the fact that if something collides in our universe, we ask the object to
"explode" and we pass in the pointer to the object itself. Thus, in the method, we can then remove that object from
the universe (if it has exploded it shouldn't stay around for further simulation!). Thus we have a way of passing
objects as arguments to other objects.
Finally, note how we send a callback object to the clock, which will create a message to be sent to this object on
each clock tick, in this case, just asking this ship object to move.

Slide 13.4.10
So we are almost done. We need to have something that makes
instances of torpedoes. Note that it has a lot of the same form as
a ship, but has its own internal procedures for exploding and for
moving.

Slide 13.4.11
Having done all of this, we can now run a little simulation. We
create some instances of objects, we add them to this universe,
and then just run the clock to start the simulation.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 13.4.12
So here are the key messages to take away from this exercise.

	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

