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6.001 Notes: Section 13.1 

Slide 13.1.1 
In this lecture, we are going to look at a very different style of 
creating large systems, a style called object oriented 
programming. This style focuses on breaking systems up in a 
different manner than those we have seen before. To set the 
stage for this, we are first going to return to the notion of 
abstractions, and use that idea to see how we can capture 
objects with some internal state that reflects the status of those 
objects. We are going to be led from there to a style of 
programming called message-passing in which we treat 
systems as if they consist of large collections of objects that 
communicate with one another to cause computation to take 
place. 

Slide 13.1.2 
Let's start by going back and thinking about the tools we have 
developed for thinking about computation. Two of the key tools 
we have developed dealt with abstractions. 
We have seen procedural abstractions. Here the idea is to 
capture a common pattern of processing into a procedure, then 
isolate the details of the computation from the use of the 
computation, by simply naming the procedure and using that 
name with appropriate conditions on the procedure's input. We 
saw that this style of approach is particularly useful when 
dealing with problems that are easily addressed in a functional 
programming approach, that is, where we can treat the 

procedures as generalized mathematical functions, meaning that 
their output for a given input will be the same whenever we evaluate it. 
We have also seen data abstractions. Here the idea is to modularize our system by creating data structures that 
capture key parts of the information we need to handle. The goal is to hide the details of the representation and 
storage of the data behind standard interfaces, primarily our constructors and selectors. This means the user can 
then manipulate data objects without having to worry about details of how they are maintained. 
As you might expect, often the data abstractions and the procedural abstractions work hand-in-hand, with the 
procedures used to manipulate the data using the data abstraction interfaces, and with the structure of the 
procedures tending to mirror the actual structure of the data. 
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Slide 13.1.3 
The goal in each case is actually the same: we want to hide 
details of the abstraction so that we can treat complex things as 
if they are primitive units. In the case of procedural 
abstractions, we want to hide the details of the computation, 
and treat the procedure as a primitive computational unit. In the 
case of data abstractions, we want to hide the details of how 
components are glued together, and treat each unit as an 
abstract collection of parts. 

Slide 13.1.4 
Given that we want to use abstractions as a tool in controlling 
complexity in large systems, there are several questions that 
come up when thinking about how to use abstractions. The first 
is: what is the best way to break a new problem area up into a 
set of modules? Both data modules and procedure modules? As 
we have already seen in earlier lectures, some problems break 
up in multiple ways, and breaking them up in different ways 
makes some processes easier and others harder. So a key 
question is: How do I use the idea of abstraction to break 
systems into modules and what’s the best way to do this? 
The second question deals with how easy it is to extend the 

system. If I want to add new data types to my system, is that 
easy? If I want to add new methods to my system, new ways of manipulating data types, is that easy? We have 
seen several examples of this already, we are now going to return to these questions in order to lead to a very 
different way of breaking systems up into convenient sized chunks. 

Slide 13.1.5 
Let's start by going back to data objects and data abstractions. 

Here is the traditional way of looking at data, at least as we 

have done things so far. 

First, we build some complex data structure out of primitives, 

for example, cons cells or pairs. Second, we use tags to 


identify the type of structure being represented. This tells us 

how to interpret the different slots in the list structure. For 

example, is the car of the list structure the name of a person 


or his batting average or his GPA? 

Then, the data abstraction is actually built by creating a set of 

procedures that operate on the data. These are procedures that 

take in instances of the data, use selectors to get out the pieces, do some manipulation to create new pieces, and 

then use the constructor to re-glue the abstraction back together. This led to the concept of data-directed 

programming, which we saw earlier. We use the tag to determine the right set of procedures to apply. And this 

allows the user to program in a generic fashion. They can focus on what they want to do, but have the code direct 

the data to the right place for the actual work. 
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Slide 13.1.6 
Here is a simple example to illustrate this point. Suppose I have 
a set of different geometric objects, things like numbers, lines, 
shapes, and I want to write a procedure, or an operation, that 
will scale each of those objects by some amount. Then a 
generic operation, under the data-directed approach would look 
like this procedure shown here. Given an object and my desired 
scale factor, I use the type of the object to dispatch: if it is a 
number, I just multiply; if it is a line, I ship it to the procedure 
that will scale a line, and so on. 
The point of this example is that I think about things in terms of 
the kinds of objects I have and procedures for manipulating 
each distinct object type. I use the tag or the type of the object 

to tell me which procedure to send the object to. 

Slide 13.1.7 
So now let's go back to our questions. How easy is it to extend 
such a system, a system where we are breaking things up into 
tagged data, and using data directed programming? First, if we 
add a new data type to our system, what do we have to do? 
Well we can see from our example that we will have to all the 
procedures like scale, to add a new clause to each cond, 

dispatching on that new type of object. As a consequence, if 
there are many such procedures, we have a lot of changes to 
make, both a great deal of code to write, and more importantly 
making sure that we change all the relevant procedures. 
If we add a new operation or method, what do we need to do? 
This is easier, as we just need to develop a subprocedure for each type of object to which the method will apply. 
Thus in this style of programming, adding a new data type is painful, while adding a new method is reasonable. As 
a consequence, this approach to modularizing systems works best when there are only a few data abstractions or 
when the changes are mostly new methods or operations, or when the different kinds of data structures in the 
system are mostly independent of one another. In those cases, this style of approach works well. But not everything 
fits these cases. What should we do in those cases? 

Slide 13.1.8 
So let's step back from this organization for a second. One way 
to think about structuring a large system is to realize that we are 
likely to have a large number of different data objects (or 
instances of data abstractions), and a large number of 
operations we want to perform on those objects. Conceptually, 
this means we have a big table, where we can use a different 
row for each operation we want to perform, and a different 
column for each kind of data abstraction we have. Then at each 
element in this table, we can conceptualize having a specific 
procedure, intended to perform the particular operation (e.g. 
scaling) on the particular kind of data object (e.g. a number). 
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Slide 13.1.9 
One way of actually building such a system is to focus on the 
rows of the table, that is the operations. Indeed, our use of 
tagged data was based around this viewpoint, in which we 
created generic operations that handle the same operation for 
different data objects, and used the tag on the data object to 
dispatch to the appropriate version of the procedure to handle 
that kind of data. 

Slide 13.1.10 
But given this table, there is an alternative possible 
organization, which is around the columns of the table. This 
would focus on creating a generic data object that would know 
how to handle different operations on that kind of data 
structure. 

Slide 13.1.11 
Let's step back and rethink data. This sounds like an odd thing 
to do but let's think about data in a very different way. Rather 
than thinking of data abstractions as some slots into which we 
can put things, let's instead consider data to be a procedure with 
some internal state. 
This sounds strange! But, what is a procedure? It really has two 
parts: it has a set of parameters and a body which define the 
pattern of computation to perform as a function of the objects 
passed in; and as we saw in the environment model, it has an 
associated environment which can hold name-value bindings, 
that is, pairings of names and values. 
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Slide 13.1.12 
So what, you say! Well, we can use this idea to capture 
information about a data structure. In particular, we can use a 
procedure to represent data objects with state. What would that 
mean? It would say that we could use the local environment of 
the procedure plus its parameters to hold the values of the 
datum, and we could create local procedures within the data 
procedure to manipulate these values, to change the state of the 
object. 
This means that the only access to the values of the data object 
will be through the procedure representing the data. This would 
nicely encapsulate the data structure inside this procedure. 
This probably still sounds odd so let's look at a specific 

example. 

6.001 Notes: Section 13.2 

Slide 13.2.1 
To illustrate this idea of using a procedure to represent a data 
structure, an object with state, let's look at the following, rather 
odd, example. Here is a very different way of implementing a 
cons cell or a pair. Let me stress that this is not the way that 

Scheme normally represents pairs. Of course, the idea of data 
abstraction is that the actual implementation of a data structure 
should be irrelevant to the user. This example is used to drive 
home a conceptual point. 
Here, we have implemented a pair as a procedure! Thus our 
fundamental data structure is now a procedure rather than some 
storage in memory slots. 

Slide 13.2.2 
Look at this carefully. First, note that cons, as defined here, 

involves two lambdas. Remember that there is a hidden 
lambda inside the syntactic sugar of this definition. This 

means that there is a second lambda as the body of the 

cons and thus when we evaluate (cons x y) using 

this particular implementation, we get back as a value, a 
procedure of one parameter, msg. 

So what does this say? It says that when we use cons with 

this implementation our representation for our fundamental way 
of gluing things together is now a procedure of one argument. 

So what would that cons thing do? Since it is a procedure, if we send it a value, or if we apply the procedure to 

a single argument, note what it does. It uses the value of the argument, in this case a particular symbol, to decide 
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what value to return. 

We call this style of programming, message passing, because the procedure accepts a message as input, and then 

does something based on the value of that message. 


Slide 13.2.3 
This looks a bit weird! Our constructor for gluing things 
together gives us a procedure as the actual object. Should we 
care? 
Of course we know that we shouldn't care. To complete the 
abstraction for a pair, we simply need to create car and cdr 
to fulfill the contract of the abstraction of a pair. 
Each of those is itself a procedure that takes as input a pair, 
which we know is a procedure, and then applies that procedure 
to a single argument, which in this case is just a symbolic 
message. Ideally, that message should get back for us the value 
we need to satisfy the contract. If we look at this definition for 
car, we see it takes as input one of these new pairs, and then applies that pair (a procedure) to the symbol car,
which in principle should return for us the value we used when we created the pair. 

Note the other procedure we built here. Our predicate for testing whether something is a pair now relies on the pair 
identifying itself. This is the version of our tag. Before we attached a tag as a symbol on a data structure. Here, our 
tags are part of the procedure. 

Slide 13.2.4 
To check it out, let's take this strange implementation of pairs 
and verify that this implementation satisfies the contract for a 
pair. 

Slide 13.2.5 
To test this, lets cons together the numbers 1 and 2, and give the 
resulting pair the name foo. 
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Slide 13.2.6 
So here is an environment diagram that would represent the 
state of the world, before we do this definition. In the global 
environment, we would have a binding for cons as a 

procedure, based on the previous slide. 

Slide 13.2.7 
What happens when we evaluate this expression? Since cons 
is just a procedure, evaluating (cons 1 2) says to apply 

the procedure associated with cons to the arguments 1 and 2. 

Thus, we drop a frame, scope it by the environment pointer of 
the procedure, bind the formal parameters (x and y) of the 

procedure to the values of the arguments, and relative to that 
new frame, and evaluate the body of the procedure. That body 
is itself a lambda! So it makes a new procedure object, 

whose environment pointer points to the frame E1 because that 
is where the lambda was evaluated. Then, the procedure 

object is returned as the value of the cons. Finally, the define binds foo in the global environment to this 

returned value, this procedure object. 

Slide 13.2.8 
Notice what this does. It gives us an object in this environment, 
where by object I mean the thing enclosed in red, which is a 
procedure that has a local frame with some bindings or values 
within it. Thus, x being bound to 1, and y being bound to 2 

constitutes local state information. That frame is scoped by the 
global environment, and the procedure that points to all of this 
is referred to by a name in the global environment. Thus, from 
the perspective of a user interacting at the global environment, 
foo refers to a structure that has within it information about 

what is the first part of the object (1) and what is the second 
part of the object (2). It should also have information about how 

to extract those values from the structure. 
So this pattern: of a procedure that accepts messages, has access to a local frame with state and methods to extract 
that local state; is a very common pattern that we are going to use a lot. 
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Slide 13.2.9 
Now all we have to do is check that the contract holds for this 
data abstraction. In doing so, we will see how this structure of a 
procedure with access to local state captures exactly the 
behavior we want. 
To check this, lets evaluate (car foo). We know that this 

should get converted into (foo 'car), so how does this 

happen? 

Slide 13.2.10 
Evaluating (car foo) in the global environment simply 

applies the procedure that is the value associated with car to 

the value of foo which is the procedure object shown. Now 

the definition of car shows that this reduces to evaluating the 

body of car namely (foo 'car) with respect to some 

new environment. 

Slide 13.2.11 
... and what does that do? It says to apply the value associated 
with foo, which is a procedure, so the standard environment 

model says to drop a frame, and scope it by the environment 
pointer of foo. This is important as E3 now points to E1. 

Inside E3 we bind the parameter msg to the argument car. 

Relative to this frame we evaluate the body of the procedure 
represented by foo. But that is just a cond clause that looks 

at the value of msg and compares it to a set of symbols. In this 

case, the cond says to return the value of x with respect to 

this frame, which is just 1. This is exactly what I wanted, as it 

shows that my contract is satisfied. 
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Slide 13.2.12 
So what does all this say? Aside from showing that our contract 
is fulfilled, that what we glue together using this version of 
cons we can get back apart using car or cdr, we have 

also seen this common pattern that we can create a data object 
represented as a procedure. The procedure has some local state 
captured in a frame that is accessible only by that procedure and 
it has the ability to accept messages and based on those 
messages return information from the local state. So let's see 
how to build on that idea. 

Slide 13.2.13 
In the case we just considered, our procedures for data 
structures could return values as a function of input messages. 
If we are going to use this idea of message-passing procedures 
to represent information, we also need to have ways of 
changing the value of the state captured by those procedures. In 
our pair example, here is how we would do this. 

Slide 13.2.14 
Let's add two more messages, or two more ways of dealing with 
messages, to our constructor, cons: one for dealing with 

mutating the car and one for dealing with mutating the cdr. 

Notice that in this case we need something different. If the 
cons pair (i.e. one of these procedures) gets the message 

set-car! we are going to return a procedure that will 

take a new value for the car and change the old value to this 

new value. 
This is a different behavior from before. Now a message gets us 
back a procedure rather than a number. 
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Slide 13.2.15 
As a consequence, the procedure set-car! must have a 

new form. As before, it will take a pair and a new value as 
arguments, but now it sends the pair (that procedure) the 
message set-car!, which gives us the procedure needed 

to change values, and we then apply that procedure to the new 
value. You can see that the definition accomplishes exactly this. 

Slide 13.2.16 
So let's trace this through. Here is a definition for bar to be 

the cons of 3 and 4, and here is the global environment in 

which we are going to do this. 

Slide 13.2.17 
When we evaluate this expression we simply get a structure 
similar to what we saw before, a binding of bar to a 

procedure with some local state. Thus, we have bar as a 

message-passing object. 

Slide 13.2.18 
So now let's mutate this object. Let's change the car part of 

this object to be 0. Then evaluating (set-car! bar
0) reduces to evaluating ((bar 'set-car!) 0)
in some other frame. Now how does evaluating this expression 
effect the right mutation? 
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Slide 13.2.19 
First, we need to get the values of the subexpressions with 
respect to this frame. Well bar is bound to a procedure, so we 

can apply it to the symbol set-car!. This drops a frame, 

scoped by E4 because bar's procedure is also scoped there. 

Within that frame we bind msg to the symbol set-car! 
and relative to that frame we evaluate the body of the procedure 
bar. This will return an expression (lambda (new­
car) (set! x new-car)) to be evaluated with 

respect to this frame E6. 

Slide 13.2.20 
Now here comes the critical point. Remember that we are 
evaluating the body of bar with respect to E6, which reduced 

to evaluating (lambda (new-car) (set! x
new-car)) with respect to this frame E6. 

This, of course, creates a procedure object, whose environment 
pointer is scoped by E6 (and this is the crucial point!). Note that 
this newly created procedure object will have access to E6 and 
by chaining to E4. This procedure object is the value returned 
by evaluating (bar 'set-car!). 

Slide 13.2.21 
... and this is exactly what I want. I now apply this procedure to 
the value 0, which is the last part of the original evaluation. By 
environment model, I just drop a frame, scoped by E6, binding 
new-car to the value 0. Thus E7 is scoped by E6, which in turn 
is scoped by E4. Relative to E7, I now evaluate the body of this 
procedure that I just created, and that says (set! x new-
car) with respect to E7. 

Slide 13.2.22 
So now we evaluate that set! expression with respect to E7. 

First we find the binding for x, which we get by tracing from 

E7 through E6 to E4. Then we find the binding for new-
car which we find in E7, and then change the binding for x 
in E4 to this new value. 
Notice how we have now mutated a value in the local state 
associated with bar. Thus our procedures can not only 

capture local state information, they can also supply procedures 
for changing local state. 
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Slide 13.2.23 
This is certainly different from our earlier data abstractions. 
Now we have data objects that are actually procedures. A cons 
pair is now a procedure, and car or cdr is something that 

operates on a procedure. But as we have seen, the cons,
car, cdr we just built satisfy the data abstraction 

contract, and therefore behave as expected. The key new thing 
we have is a procedure that represents data, and takes messages 
as input and returns either data values or procedures for 
changing data values. This is a very handy idea, so let's 
generalize it. 
Let's create private state variables (as we did earlier) but also 
private procedures that will belong to each instance of the data abstraction. 

Slide 13.2.24 
Notice the difference in this version. Now I create internal 
procedures (change-car, change-cdr) but 


inside of my actual object, I not only create those procedures, I 

use them inside the object. This has a nice effect in that when I 

execute some operation on an object, I don't have to remember 

what type of value is returned by the object (e.g. number versus 

procedure). In all cases, the use of the data object is identical. 

Thus now our selectors and mutators perform in a uniform 

manner. 

Before, we had to remember whether the object returned a 

value or a procedure, in order to complete our manipulation. 


Here, the selectors and mutators just send a message to the object and within the implementation of the object, we 

take care of the necessary work to either apply an internal procedure or to simply return a value. 

Notice that by defining the internal procedures within the context of the cons we will create procedures that are 


scoped within the created by calling the cons. Thus, these procedures will belong only to this instance of the 


data object. 

By making a uniform interface for mutators and selectors we have introduced one other thing into our system. In 

particular we now need our selectors and mutators to deal with different numbers of arguments, and yet we would 

like our data abstraction to be a single procedure. So we need a way of letting a lambda specify that it wants to 


take an arbitrary number of arguments. That is the "funny" notation you see of (lambda (msg .

args) body), which we deal with on the next slide. 
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Slide 13.2.25 
Up until now, every procedure you have written has required 
that you specify names of all the input parameters, and as you 
have seen, if you call the procedure with the wrong number of 
arguments it causes an error. We would like a mechanism that 
lets a procedure take an arbitrary number of arguments, such as 
you have already seen with built-in procedures like +. 

Slide 13.2.26 
So Scheme provides a way of doing this. To see this, let's 
define (add x y . rest) to be a procedure that is 

going to add a bunch of things. Here, the syntax is an argument 
x an argument y and then a dot (.) and then the argument 

rest. And the behavior is as follows: If we apply add to a 

set of arguments, the value of the first argument will be bound 
to the variable x, the value of the second argument will be 

bound to the variable y and the values of the any other 

arguments will be bound, as a list to the variable rest. 

Thus if we evaluate (add 1 2) then x is bound to 1, y is 

bound to 2, and rest is bound to an empty list. If we try to evaluate (add 1) we will get an error, because 

in this format, the first two arguments are required, i.e. we must have something for both x and y. But if we 

evaluate (add 1 2 3), then x will be bound to 1, y will be bound to 2, and rest will be bound to the list 

(3). And if we evaluate (add 1 2 3 4 5) in this case rest will be bound to the list (3 4 5). 

Thus in this notation, all of the parameters prior to the dot must have a value passed in, the parameter after the dot 
will be bound to the list of the values of all the remaining arguments. 

Slide 13.2.27 
If we come back to our example, we see that if we just take the 
car of a pair, msg will be bound to the symbol car, and 

rest will be bound to the empty list. On the other hand, if we 

want to mutate the car of a pair, then msg will be bound to the 

symbol set-car!, and args will be bound to the list of 

one value, the new value to be used. Within the procedure that 
defines the cons, notice what happens. If we are going to 

execute a set-car!, we apply the internal procedure 

change-car to the first value in the list args. In other 

words, it will extract the right value to use, and cause the 
appropriate change, it will mutate the binding of x to be that new value. And thus we can apply these internal 

procedures to the appropriate values, while preserving a uniform external interface. 
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Slide 13.2.28 
Since we have been throwing a lot of details at you, let's step 
back for a moment. What we have now seen is a method, using 
a particular example to illustrate, for creating a procedure that 
captures local state. This procedure takes in a message, and 
based on that message and possibly some other arguments, 
either returns values based on the local state or it causes 
changes in that local state. 
This new method, this idea of a message passing procedure, 
let's us capture information about a data structure inside a 
procedure itself. 

Slide 13.2.29 
So what does this say? We have introduced the basic idea of a 
new style for approaching computational systems. Our 
traditional style is procedural programming: we organize the 
system around the procedures that operate on the data. The key 
is that we isolate the data in standard list-like structures, with 
tags, then focus on thinking about what methods or procedures 
we want to use to manipulate the values within those structures. 

Slide 13.2.30 
Here we have shown the basis for a new approach, which is 
oriented around the data objects themselves. Note what we did 
with our example of a pair. We focused on capturing the 
information within a structure, where the operations to 
manipulate the data were associated directly with that structure. 
More importantly, the basic conceptual unit was the data object 
itself. What messages should an object handle? What operations 
should an object support? How should we capture those 
methods internally within the object? 

Slide 13.2.31 
So which approach is better? It depends on the problem 
domain! Procedural methods are very good when we are 
dealing with things like numerical operations or when we are 
dealing with systems with very small numbers of data 
structures. 
On the other hand, object oriented systems are very good for 
things like simulations or for systems with large numbers of 
objects, where the objects are characterized by a small amount 
of state information and the computation basically involves 
interaction between the objects, causing that state to change. 
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6.001 Notes: Section 13.3 

Slide 13.3.1 
We have seen lots of examples of the first style of programming 

in the first part of the course. Now we are going to spend some 

time exploring the second style. What does it mean to create an 

object-oriented system? 

To discuss this, we need some terminology: In an object-

oriented system, we will talk about a class and an instance. A 

class captures a set of objects, with common behavior. For 

instance, cons in our previous example was a class. By 


convention, to use a class we will have a maker procedure that 

creates instances of this class. 

An instance will be a particular and specific version of a class. 

For example, foo or bar in our earlier examples were instances of the cons class. An instance takes 


messages in the manner defined by the maker procedure and uses them to manipulate the particular values of the 
instance. So we expect as a consequence to have lots of instances of a particular class in our system. 

Slide 13.3.2 
So here is a good way to conceptualize these ideas, and in 
particular the differences between them. Associated with a class 
will be a class diagram. This contains information such as the 
name of the class (pair), the private state that belongs to the 

class (x and y), as well as what public messages are 

recognized by this class (car, cdr, pair?, set-
car! and set-cdr!). Note that these public messages 

define the interface to the class of objects. This class diagram 
thus captures the relevant information about a class. 

Slide 13.3.3 
Thus in our earlier example, cons defines a class. Our 

previous definition for cons is our particular way of 

implementing this class, or constructing elements of this class. 
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Slide 13.3.4 
And that leads naturally to the idea of an instance. When we 
use the maker associated with this class, we create particular 
instances of the class, or examples from this class. We can 
represent diagrammatically in an instance diagram. Within 
that diagram, we will have information about the type of each 
instance as well as specific values for the internal state of each 
instance. Note that these values could themselves be other 
instances of classes. 

Slide 13.3.5 
So if I define the example expression shown, in my instance 
diagram I create two instances of the class pair, both created 

by the maker procedure cons. Within each, I have bindings 

for, or specific values for, the internal state associated with each 
instance. Notice how these bindings can be simple values like 
numbers or pointers to other instances of classes. 
So we see that a class defines a set of objects and an instance is 
a particular version of an object from some class. 

Slide 13.3.6 
So how do I use the ideas of classes and instances to start 
designing a system? Let's suppose, as an example, that I want to 
build a simulator for a star wars game: it would have ships that 
could fly through space, land on planets, shoot other ships. 
I can start by thinking about what kinds of objects do I need? 
That will tell me what kinds of class I need and what state 
information is needed for a class and what interfaces between 
classes are needed. It might say, for example, that I want some 
ships. Since ships will need to move, this helps me decide what 
kind of state a ship will need. 
Thus I begin thinking about the system in terms of what kinds 
of objects and what information associated with those objects 

do I want. I can then extend this to start thinking about particular instances of objects. How many, what state for 

each, and so on. 

So let's see how the idea of a class, and instances of a class, can be used to design an object-oriented system. 
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Slide 13.3.7 
We will use our star wars simulator to explore the use of classes 
and instances of classes to build object-oriented systems. The 
first class of objects in my system will be ships. So here is a 
procedure for making instances of the class of ships. This 
maker procedure defines the actual class. 

Slide 13.3.8 
Given the idea of a ship, I can turn to the question of what 
behavior I want for instances of that class. Clearly a ship needs 
to be able to move. Note that this then tells me that I will need 
some information about where the ship currently lies and how it 
is moving, as part of the class definition. In this case, I choose 
to pass that information in, when I actually construct the 
instance. So this tells me I will need position,
velocity and maybe some other things as inputs to the 

class constructor. 
Actually, I am cheating here. I know that in order to move, I 
need to have that kind of information as part of the class, but in 

fact I could have created a constructor with no parameters, and simply have within it a let clause that contained 

initial default values for the position and velocity. 
Notice how thinking about what I want my objects to do helps me to decide what information should be captured 
as local state, and what information should be passed in when I create instances of this class. 

Slide 13.3.9 
And what about the class itself? When I use this maker 
procedure, it will return an instance of a ship, which will be 
represented by one of these message-passing lambdas. 

Note the form. It takes as input a message, and either returns 
information about the state of the ship, or causes one of the 
internal procedures to be executed. This looks a lot like the 
generalized form we used for our cons pair earlier. 

Similarly, we will have internal procedures for manipulating the 
data values, very much like our cons example. The only 

other thing to note is how the last clause of our message passing 
procedure is a bailout clause. It says: if you give me a message 

that I don't recognize, I'll let you know so that you don't try to do something you can't. 

Thus here is a definition of a class: a maker procedure that creates ships. 
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Slide 13.3.10 
So let's gather that together in our class diagram. Here is the 
class diagram of a ship, based on that definition, including state 
variables, and messages for manipulating those state variables. 
Those messages now define the interface to instances of this 
class. 

Slide 13.3.11 
Now we can make some instances, as shown. Of course, we are 
assuming some abstraction for vectors, which we could easily 
define. Note that by using the class's maker procedure, I have 
created different instances, each with its own state variables and 
its own procedures for manipulating that state information. The 
interfaces to these instances are defined as the set of interfaces 
from the class definition. Each of these objects will accept the 
same set of messages, but case their own internal state to 
change. 

Slide 13.3.12 
To see this, let's use our environment diagram to see how our 
simulation evolves. We want to see both how instances are 
generically maintained in the system, as well as examining the 
details of our particular implementation. Let's evaluate these 
three expressions in order, to see how our classes create 
instances, and how those instances keep track of state 
information, as our simulation moves forward. 

Slide 13.3.13 
First, we will use our make-ship procedure to create an 

instance of the class. Evaluating that first expression creates a 
frame, through the application of the procedure, in which the 
formal parameters are bound to the values of the arguments 
passed in. 
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Slide 13.3.14 
Having created that frame, we then evaluate the body of the 
procedure with respect to it. Note what that does. The internal 
definitions cause a binding of a variable in this frame to the 
value shown, in particular, move gets bound to a procedure 

whose environment pointer points to this frame. Thus, we have 
an internal procedure, which will have access to the local state 
variables captured in this frame. 

Slide 13.3.15 
Thus, those two internal defines create bindings for 

names in that frame that point to local procedures with access to 
the bindings of this frame. Thus this frame contains information 
about this instance of the class, the state variables and the local 
methods that will be used to change those variables. 

Slide 13.3.16 
Having evaluated the local defines, we then evaluate the 

rest of the body of this constructor, make-ship. That 

evaluates that last lambda, creating a procedure object 

whose environment pointer also points to this frame, and a 
binding for the name in the global environment that points to 
this procedure object. Again, we get a message-passing object 
with local state and methods for changing the local state. 

Slide 13.3.17 
Suppose we ask this particular instance of a ship to move. This 
says to send the procedure representing this ship the message 
move, and we know that this reduces to evaluating the actual 

procedure move with respect to this frame. Applying that 

procedure creates a frame, even though there are no arguments 
to bind, and relative to this frame we evaluate the body of 
move. This then says to change the position. 
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Slide 13.3.18 
And of course evaluating the body of this procedure causes us 
to mutate the current value for position. Just as we saw 

with our cons example, we have changed the state of our 

instance. Thus, if we ask for the position of our object now, we 
will get this new value as the answer. 
Thus, our local instance of a ship captures within it state 
information and procedures to change that state information. 
The actual instance object is a procedure that uses messages to 
determine what to do. 

6.001 Notes: Section 13.4 

Slide 13.4.1 
The key thing to note is how we can use objects to modularize 
our design. Notice in the previous case that we can leave some 
methods blank and still test our system, as we can just fill these 
methods in when we need them. Also notice how we use the 
idea of what things we wanted the object to be able to do to 
define what state information we needed, and what methods we 
needed to deal with that information. So let's build on this idea 
to see what other capabilities we can add, and how thinking 
about things in terms of classes of objects and instances of 
those classes allows us to easily design interactive systems. 

Slide 13.4.2 
So what kinds of things could we add to our system? 
First, we could add new classes, for example a planet class, 
which should have a different behavior from ships. 
Second, we forgot to allow for types and tags in our system. 
This means we need to add predicate messages and methods so 
that objects can identify their type. Note that this arises once I 
add more than one kind of object to my system (e.g. with just 
ships I might not need it, but once I add planets I have to 
distinguish between types of objects). 
And we might want a display handler, something that draws the 
position of my objects on a screen. This we will see can be 
implemented as a procedure, so that not everything needs to be 

an object in our system. To do this, we will need to modify our classes so that every object can display itself on 

demand. 

With this framework for modifying our system, let's see how one goes about extending object-oriented systems. 
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Slide 13.4.3 
If we add planets to our system, we will have a new class 
diagram. In addition to our earlier class, we now have a class 
for planets, with some state information and some methods for 
manipulating that information. Notice that as part of our design 
we add two new things to both this class and our original ship 
class: a predicate for testing types, and a method for handling 
display. 
Now watch how we can add new instances to our system and 
how we can easily return to our original design and modify it to 
add new components and methods. 

Slide 13.4.4 
To start, here is our maker procedure for the planet class. Note 
that the only local information is position and the 

instances will recognize three methods. Here is our first version 
of a predicate: the message planet? will return the true 

value, to indicate that this object is of that type, hence we have 
a new way of tagging objects. And notice how we can add 
methods that simply execute a procedure without returning a 
value. Here draw is used for the side effect of graphically 

displaying the planet. 
Note in particular how planet? is defining the equivalent 

of a type tag. 

Slide 13.4.5 
Now that we have seen some simple extensions to our world, 
what else can we add? Well, the original motivation for 
building this system is to enable large systems of different 
kinds of objects to interact. We would like to set up our system 
so that we can create a bunch of objects, initialize their state, 
and then let the objects interact in a simulation of some 
dynamic evolution. 
To do this, we just add one new object: a clock. If we then keep 
track of everything in our universe of instances, we can have 
the clock synchronize the evolution of each object by sending it 
a message to update its state, which it will do through its own 
local procedure. 
And to add some spice to our system, we will let ships shoot at each other, so we will add a new class, a torpedo. 
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Slide 13.4.6 
If we add torpedoes we need to update our class diagram, and 
here it is. Notice that this class shares a lot of common 
information with ships, a point to which we will return later. 
The top level point to note is how our design is evolving. We 
started with a single class, and have now added new classes as 
our desires for the system expand. Each class has a set of local 
state variables, and methods that it is capable of handling. 
The other change to our class diagram is the inclusion of a new 
method for each object, the ability to accept a synchronization 
signal from the clock, and then update state. 
Again, note how our design is evolving. We can add new 
classes, and we can extend existing classes by adding new 

methods as our desired behaviors for the system demand them. 

Slide 13.4.7 
We also need a way of coordinating the actions and interactions 
of objects in our universe. One way to do this is to use a clock, 
which could send a signal to each object to synchronize the 
passage of time. For example, a clock tick could cause a ship 
to move a small amount, or fire a torpedo, or launch a shuttle. 
There are several ways to accomplish this; here is a sketch of 
one. Our clock maintains a list of things to do on each tick of 
the clock. In particular, it does this by storing, as internal state, 
a list of callbacks, that is, messages to send to specific objects 
to execute specific actions. 
We can then simulate our world by running the clock through a 
sequence of ticks. On each tick, the clock walks down its list of 
callbacks, and asks each to activate.  Intuitively, this means that it asks a set of objects to pass messages to target 
objects, like our ships. 

Slide 13.4.8 
To make this happen, we simply need to create a new object, a 
callback.  This is simply a new object that stores a target 
object, a message and a set of arguments. When activated (by 
the clock), it sends the target object the message, which will 
cause something to happen in the world. It can be thought of as 
a button that executes an action every tick of the clock. The 
details are not crucial, what matters is the idea that a single 
object, a clock, can control another set of objects, the 
callbacks, that synchronize the actions of objects in the 
universe. 
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Slide 13.4.9 
We can also evolve our class definitions. Given that we want to 
add some new capabilities to our ships, we return to the maker 
procedure and change it. For example, we can add a method to 
fire torpedoes, together with methods that update the state 
associated with torpedoes. Also note as part of this how we use 
a maker to create a torpedo, and adding the torpedo to the 
universe will presumably cause the torpedo to send a callback 
message to the clock so that the clock can keep track of it. 
We also need to allow ships to explode, and notice the form 
here. The actual procedure explode takes as argument a 

ship, which needs to be removed from the universe. Notice how 
to support this we have changed the definition of our message 
passing object to use that "dotted" argument notation, so that we can pass in arbitrary numbers of arguments to an 
object. We use that here to allow for the fact that if something collides in our universe, we ask the object to 
"explode" and we pass in the pointer to the object itself. Thus, in the method, we can then remove that object from 
the universe (if it has exploded it shouldn't stay around for further simulation!). Thus we have a way of passing 
objects as arguments to other objects. 
Finally, note how we send a callback object to the clock, which will create a message to be sent to this object on 
each clock tick, in this case, just asking this ship object to move. 

Slide 13.4.10 
So we are almost done. We need to have something that makes 
instances of torpedoes. Note that it has a lot of the same form as 
a ship, but has its own internal procedures for exploding and for 
moving. 

Slide 13.4.11 
Having done all of this, we can now run a little simulation. We 
create some instances of objects, we add them to this universe, 
and then just run the clock to start the simulation. 
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Slide 13.4.12 
So here are the key messages to take away from this exercise. 
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