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6.001 Notes: Section 12.1 

Slide 12.1.1 
In the last lecture, we introduced mutation as a component of 
our data structures. We saw, for example, that set! was a 

way of changing the value associated with a variable in our 
system, and we saw that set-car! and set-cdr! 
were ways of changing the values of parts of list structure. 
Now, several important things happened when we introduced 
mutation. First, we introduced the notion of time and context 
into our interpretation Scheme. The order in which things were 
evaluated now mattered in terms of changes in returned values. 
As a consequence, secondly we shifted from a functional 
programming perspective to a more state-based programming 
perspective, a point to which we will return. Third, we unfortunately introduced the opportunity for bugs and errors 
in our system, since shared objects allow the mutation of one to affect the value of the other, another point to which 
we will return. And finally, fourth, we broke the substitution model. 
This last point needs to be addressed, and indeed in addressing it, we will also address many of these other points. 
In this lecture, then, we are going to replace the substitution model with a stronger model, that incorporates the 
substitution model as a piece of it, but also accounts for state, time, context and mutation. 

Slide 12.1.2 
To stress this idea that the substitution model no longer holds, 

consider the following example. Why does this code behave in 

this manner? 

We can see that make-counter is a higher-order 


procedure, that is, it returns a procedure as its value. Suppose 
we use it to create a counter, called ca. Now if we all this 

procedure (or evaluate its application) several times, we see that 
is behavior is to count starting at 1, increasing the returned 
value by one each time. Thus the standard substitution model 
(or functional programming model) no longer holds, because 
the same expression is being evaluated each time, but a 

different value results, depending on when we evaluate the expression. 
If we create a second counter, cb, we end up with different structures. As shown in the last two examples, these 

two counters are independent, with cb now counting from 1, but ca continuing to count from its place. Thus, 

even though these objects were created by evaluating the same expression, they do not share any common state. 
So, our substitution model is broken, caused by the introduction of mutation. We thus need a better model that 
would explain how this code behaves. 
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Slide 12.1.3 
To do this, we are going to introduce a better model of 
evaluation, known as the environment model. This model will 
explain things covered by the substitution model, as well as 
new effects such as mutation. And it is going to lead us towards 
a much better understanding of the evaluation process. 

Slide 12.1.4 
So what is the environment model? For now, think of it as a 
very precise, very mechanical description of a set of rules for 
determining the values associated with expressions in Scheme. 
Thus, similar to what we saw several lectures ago, we will have 
rules for dealing for getting the value of a variable, a rule for 
creating a value of a variable, and a rule for changing the 
value of a variable. We'll also have a rule for creating 
procedures, and a rule for applying procedures. 

Slide 12.1.5 
So our goal will first be to determine the specific rules for the 
environment model for these kinds of expressions. Once we 
have set out those details, we will be able to explain the 
evolution of the evaluation of arbitrarily complex expressions, 
such as the example we just saw. More importantly, by using 
the model to analyze code, we will learn how to associate 
particular coding choices with their effects of the evaluation 
process. This will allow us to reverse the process. By deciding 
the behavior we want in our evaluation process, we will be able 
to work backwards to determine the code components needed to 
achieve that behavior. 
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Slide 12.1.6 
There are two main reasons for doing this. The first is simply to 
understand the effect of our design choices in creating 
procedures, for example how mutation will affect behavior. 
Ultimately, however, we are going to see that this environment 
model serves as a blueprint for building an actual interpreter for 
Scheme, that is, the actual mechanism for evaluating Scheme 
expressions inside a machine. 
As a consequence, for now we will use abstract representations 
for our environment model, but we will eventually see how this 
leads to a very mechanical method that can be implemented to 
actually build a Scheme system. 

Slide 12.1.7 
As we build up the pieces of our environment model, a key 
thing to keep in mind is that we are about to shift our viewpoint 
on what constitutes the basic units of computation. 
Until we introduced mutation, we could think of a variable as 
just being a name for a value. That was exactly how it behaved, 
in the functional viewpoint of computation. Now we are going 
to change that viewpoint. We are going to think of a variable as 
a place into which one can store things, a name for a cubicle 
into which things can be placed. 
The second change we are going to make deals with 
procedures. Up until now, we could really think of a procedure 
as a functional description of some computation. We stressed 
this idea that evaluating the same expression gave rise to the same value, it behaved as a mapping from input 
values to output values, like any ordinary function would. Now, we are going to change that viewpoint. We will 
instead think of a procedure as an object, with an inherited context. That context tells us how to interpret symbols 
in that computation, which will change our overall view of computation. 
And finally, we are going to change the way we think about expressions. We now will say that an expression only 
has meaning with respect to a structure called an environment, something that we are about to define. This means 
that an expression now inherits its value, by inheriting information about what was occurring when they were 
created. 
So we ask that you keep these ideas in mind as we build our new model of computation. Variables are now places 
into which one can store things, procedures are now objects with an inherited context, and expressions have 
meaning only with respect to an environment. 
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Slide 12.1.8 
Now we can start building our environment model. First of all, 
if variables should now be thought of as places, we need a way 
of organizing them. So the first piece of an environment is 
something we call a frame. This just consists of a table of 
bindings, and a binding refers to a pairing of a name and a slot 
into which a value can be stored, which will be associated with 
that name. 

Slide 12.1.9 
In terms of an abstract schematic for keeping track of things, 
here is a table of bindings. Table A, which we also refer to as a 
frame, has two bindings in it: it has a binding for the variable x, 

and a binding for the variable y. 

Slide 12.1.10 
And in particular, we say that x is bound to the value 15 
within Frame A, and y is bound to the value of the list (1
2) within Frame A. 

Notice that the expression x has a value 15 associated with it 

in this frame, as determine by looking up the binding of x 
within this table. Shortly we will talk about how we actually 
establish bindings in this frames, but for now we have the first 
piece of our environment model. A frame is a table of bindings, 
and a binding is a pairing of a name and a value. 

Slide 12.1.11 
An environment consists of a sequence of frames, for reasons 
that we will see shortly. 
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Slide 12.1.12 
So here is our frame from before, with the bindings we had... 

Slide 12.1.13 
... and here is a second frame, with its own set of bindings. An 
environment is a nested sequence of frames, so environment E1 
consists in this case of Frame A followed by Frame B. 

Slide 12.1.14 
A second environment, E2, might just consist of Frame B, so 
note that a frame can be shared by more than one environment, 
and we will see shortly why that is a powerful tool. 

Slide 12.1.15 
The connection between frames is important, and is called an 
enclosing environment pointer. So for example, E1 starts with 
Frame A, and inherits Frame B as its enclosing environment, 
which in fact is similar to E2. We will see shortly why all these 
pieces put together help us understanding exactly how 
evaluation is going to proceed. 
So far, we have just been talking about details: we have frames, 
which are tables of bindings, we have connections between 
frames, and we have environments as sequences of frames. 
With all of these pieces in mind, we can now start relating them 
to the actual evaluation of expressions. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 12.1.16 
Now we are ready to see how to connect environments to 
evaluation. First, as we have already suggested, all evaluation is 
going to take place with respect to some environment. The 
environment will provide the context for how to interpret 
symbols and names. Notice that this won't always be the same 
environment, and a key issue is that whenever we apply a 
procedure, we will create a new environment, which captures 
the context for interpreting the variables of that procedure. 

Slide 12.1.17 
We have said that all evaluation of expressions is going to take 
place with respect to an environment. And we have also seen 
that environments can inherit other environments as part of the 
chaining process. Nonetheless, this means that eventually we 
have to terminate that chaining of environments, and to do that 
we have a special environment, called the global environment. 
It has no enclosing environment and is the only such 
environment with that property. This is the environment in 
which we will normally evaluate expressions, as it is our 
starting point. It is also going to hold the bindings for our basic 
expressions in our language. 

Slide 12.1.18 
So we are ready to start putting together rules for evaluating 
expressions with respect to an environment. Before we do, lets 
remind you that our central rule for evaluation deal with 
combinations, and in this new model things are nearly the same 
as they were in the substitution model. 
As before, we will evaluate the subexpressions in any order, 
now with respect to the current environment. Then we will 
apply the value of the first subexpression to the values of the 
others. We will see shortly how to do that in a very mechanistic 
way. With all of this in place, lets start actually building the 
environment model. 

6.001 Notes: Section 12.2
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Slide 12.2.1 
Okay, we are ready to start looking at our rules for evaluation in 
our new model, especially to how environments are created and 
manipulated as part of the evaluation process. 
The simplest possible expressions are just numbers. These are 
self-evaluating which means that their value is just their value, 
independent of the environment. 
The first interesting rule comes with names. We have a way of 
dealing with evaluation of names, our simplest kind of 
primitive, and that rule should tell us how to get the value 
associated with a variable. 

Slide 12.2.2 
The rule is straightforward, but quite mechanistic. A name X 
evaluated in an environment E gives back the value of X in the 
first frame of E in which there is a binding for X. Remember, 
an environment is a sequence of frames, so we will start in the 
first frame of the environment, looking for a binding of that 
name. We will continue up the chain of frames until we find the 
first such binding, in which case we return the value associated 
with that binding. 

Slide 12.2.3 
So here are our example environments from before. We will 
call the top level environment, the global environment, or our 
stopgap environment. Environment E1 has its own frame, and 
inherits as its enclosing environment, the global environment. 

Slide 12.2.4 
We can now talk about the value of a variable with respect to 
an environment; in fact we should always talk about the value 
of any expression with respect to some environment. For 
example, we can ask for the value of the variable z with respect 

to the global environment. Notice the notation we use for this, 
namely the expression, then a | to indicate the evaluation with 

respect to some environment, then a subscript to denote the 
actual environment. Note that normally we will evaluate 
expressions with respect to the global environment, since that is 
where we interact with the Scheme system. If I type in an 
expression to the Scheme interpreter, I am interacting with the 
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global environment. 

Our rule can now be used. The value of variable z with respect to the global environment is clearly 10, as that is 


the pairing associated with it. If I ask for the value of z with respect to the environment E1, I start in frame A. 


Since there is no binding for z in that frame, I move up the enclosing environment pointer to the next frame, in this 


case, the global environment, and look for the binding of z there. Since there is one, I return the value 10. 


Finally, if I ask for the value of x with respect to E1, it points to the first frame A, and I look there for a binding. 


Since there is one, I return that value, 15. 


Slide 12.2.5 
On the other hand, if I ask for the value of x with respect to the 

global environment, I first look in Frame B for a binding. This 
returns the value 3, the value associated with x in that frame. 

In this case, x has a different value in different environments. 

In one, its value is 15, in another it is 3. We say that the 

binding of x in Frame A shadows the binding of x in Frame B, 

it hides it so that if we start in Frame A, we only see the binding 
visible there. 
Thus, we see how the name rule tells us the mechanism by 
which we look up the value associated with a variable in some 
environment. 

Slide 12.2.6 
Given that we have a rule for looking up values associated with 
variables, what about a rule for creating bindings for variables? 
That, we know, is a define expression, and we have a rule 

for dealing with such expressions. A define special form, 

when evaluated in an environment E, creates or replaces a 
binding for that variable in the first frame of E, and it always 
does this in the first frame of E. 

Slide 12.2.7 
Here is our environment structure from before. Let's look at 
what defines do when they are evaluated with respect to 

this structure. 
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Slide 12.2.8 
First, suppose we evaluate (define z 20) in the 

global environment. As I said earlier, this might be an 
expression that you typed into the computer, and we want to see 
what happens. 

Slide 12.2.9 
Note what the rule says: create a binding or replace a binding 
for the variable, in this case z, in the first frame of the 

environment, in this case, the global environment. So that old 
binding for z as 10 gets replaced by a new binding of z to 20. 

Slide 12.2.10 
On the other hand, suppose we evaluate (define z
25) with respect to E1. What happens in this case? 

Slide 12.2.11 
Remember our rule: create or replace a binding for the variable 
in the first frame of the environment. So in this case, we do this 
in frame A, the first frame of environment E1. Since there is no 
current binding for z in this frame, we create a new one, and 

we have now set up a shadowing of z. The z bound to 25 in 

Frame A will shadow the binding of z to 20 in Frame B, 

similar to what we saw in the previous slide. 
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Slide 12.2.12 
Thus, we have a rule for looking up the binding of a variable, 
and a rule for creating a binding of a variable. We should also 
have a rule for mutation of the binding of a variable. This is 
our set! rule. The rule says: mutating a variable x with respect 

to an environment E changes the binding for x in the first 

frame of E for which such a binding exists. Note carefully how 
this differs from define. 

Slide 12.2.13 
Here is our environment structure from before. Let's look at 
what happens we evaluate set! expressions with respect to 

this environment structure. 

Slide 12.2.14 
Let's evaluate (set! z 20) with respect to the global 

environment. 

Slide 12.2.15 
The rule says: find the first binding for z in that environment. 

Since we are using the global environment, we look there first, 
and fortunately there is a binding for z in that environment. So 

we change it. In place of the binding for z we substitute the 

value 20, causing a mutation. If we look back at the previous 
slide, we can see that in this case the effect is exactly the same 
as a define. So why do we have two different forms? 
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Slide 12.2.16 
Well let's evaluate (set! z 25) in environment E1, 

instead. 

Slide 12.2.17 
Remember what the rule says: starting in the first frame of E1, 
find a binding for z. Since there isn't one in the first frame of 

E1, we chase up the pointer chain to the next frame, B. 
Fortunately, there is a binding here, so we change that binding, 
that is, we actually change the value in the slot associated with 
z, removing the old value, and inserting the new one. Compare 

this to what happened when we used defines on the 

previous slide. Notice that now the change has taken place in a 
different environment from where we started. Set! always 

finds an existing binding for the variable, walking up the chain 
of environment pointers as needed until it finds a binding and changes it. Define always creates a binding in 

the current frame, even if there was a previous binding there. 

Slide 12.2.18 
Okay, let's see if you are getting these ideas. Here is a set of 
expressions that we would like you to evaluate in order. Take a 
second to see what each one does, then move to the next slide to 
see what the effect should be in each case. 
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Slide 12.2.19 
Well the first one is straightforward, but let's work through it 
carefully anyway. Evaluating this expression with respect to E1 
says: get the value of z, which says start in E1 and move up the 

enclosing environment pointers until we find a binding for z, 

which happens to be 10. Get the value for 1, which is just 1. 
Then, add them together to return the value 11. 

Slide 12.2.20 
Doing the mutation of z with respect to E1 says: First, get the 

value of (+ z 1) with respect to E1. We just did that, and 

we know that will be 11. Then the rule says, starting in the first 
frame of E1, find a binding for z. There isn't one in Frame A, 

so go up the enclosing environment pointer to Frame B. Ah, 
there is the binding, so change this binding to the value we just 
computed. 

Slide 12.2.21 
Now, let's do a define with respect to E1. Remember, we 

get the value of the subexpression (+ z 1) with respect to 

E1, and just as we did before, we start in E1, and since there is 
no binding for z there, we go up the environment pointer to 

find the binding for z, which is now 11. We then add that to the 

value 1, and then create a binding for z in the environment E1. 

This means we create a pairing of z and 12 in Frame A. 

Slide 12.2.22 
And the last one we tried to sneak by you! We can still get the 
value of (+ z 1) with respect to the global environment. 

But trying to do a set! of y with respect to the global 

environment will fail. Since we start in the global environment 
looking for an existing binding for y, we never see the binding 

for y in E1, and since we find no binding in GE, we reach an 

error. 
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Slide 12.2.23 
Next, we need to deal with lambda expressions, and here we 

see a big change in our view of evaluation. First, we are going 
to introduce some more explicit notation for the procedure 
created by the evaluation of a lambda expression. 

Slide 12.2.24 
If we go back to our two-view world, which we used when 
talking about the substitution model, we said that evaluation of 
a lambda created a compound procedure in the evaluation 

world, which had a particular printed form in the visible world. 

Slide 12.2.25 
In the environment model, we are going to be much more 
explicit and mechanistic about what it means to create a 
compound procedure. In particular, we are going to create a 
notation for it, called a double bubble. 

Slide 12.2.26 
This object contains two parts. The first part, or the first bubble, 
points to the actual code associated with the procedure. It has 
two parts, the formal parameters of the procedure and the actual 
body of the procedure, just as we saw inside a lambda 
expression. 
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Slide 12.2.27 
Note, by the way, that the body of the procedure, (* x x)
in this case, is just list structure. It has not yet been evaluated, 
and we have no value associated with it. It is simply copied as 
the code associated with this part of the double bubble. 
The new part is the second bubble. It points to an environment, 
and in particular to the environment in which the lambda 
expression was evaluated. This environment pointer captures 
a context, the context that was in place when the lambda 
expression was evaluated. This is the context in which the 
symbols of the code of the lambda will be evaluated. 

Slide 12.2.28 
Now we can define the lambda rule for evaluation in our 


environment model. We know that this should create a 

procedure object; the key is that the environment pointer points 

to the current environment. 

Thus, the lambda special form, when evaluated with respect 


to some environment E, creates a procedure object, whose 

environment pointer is that environment E, and whose code 

pointer points to the body of the lambda expression. 


Slide 12.2.29 
Let's look at this in more detail. Here, again, is our environment 
structure that we have used in previous examples. Let's look at 
what happens if we evaluate a lambda expression with 

respect to this structure. 

Slide 12.2.30 
In particular, let's evaluate the indicated expression with respect 
to environment E1. Let's start with the lambda itself, the 

inner part. 
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Slide 12.2.31 
The rule says to evaluate this lambda with respect to E1. So 

that will create one of these procedure objects, this little double 
bubble. The code part of it points to the formal parameter x and 

the body, (* x x). The environment pointer we also know 

should point to a specific place ... 

Slide 12.2.32 
... specifically, it should point to Frame A, because the 
lambda was evaluated with respect to E1, and Frame A is 

the first frame of the environment. Notice that this rule very 
mechanistically specifies to where the environment pointer 
should go. That is the context in which lambda was 

evaluated, that is therefore the context that will define how to 
interpret other symbols within the body of the procedure. 

Slide 12.2.33 
The next important point to note is that evaluating a lambda 
actually returns a pointer to the procedure object. That is, 
evaluating that red lambda expression returns as its value a 

pointer to that red double bubble. Why is this relevant? 

Slide 12.2.34 
... because we can now complete the evaluation of the 
define expression. Remember what a define should 

do. It should create a binding for the symbol square in the 

first frame of environment E1, with an associated value of the 
pointer to the double bubble. Thus we will create a pairing of 
the name square and this object in the first frame of E1. 
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Slide 12.2.35 
Now comes the big change. Remember that the central part of 
our evaluation model is how to apply a compound procedure to 
a set of arguments. That is, how to apply a procedure that we 
have created using a lambda to a set of arguments, to 

execute some computation. 
We saw that in the substitution model. Now we need to define 
this for the environment model. This process has four steps. To 
apply a compound procedure to a set of arguments, do the 
following. Step one: create a new frame, A. Step two: convert 
that frame into an environment, by taking A, and having its 
enclosing environment pointer go to the same frame as the 
environment pointer of the procedure object being applied, P. 

This is very important, as Frame A will inherit the same environment as the procedure inherited. Step three:

within Frame A, bind the formal parameters of the procedure to the associated arguments passed in. Finally, Step 

four: evaluate the body of the procedure P in this new environment. 


Slide 12.2.36 
This is the central step of the environment model. These four 
mechanistic steps are essential to your understanding of this 
model. 
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