
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 11.1 

Slide 11.1.1 
For the past few lectures, we have been exploring the topic of 
data abstractions, and their role in modularizing complex 
systems. We have particularly looked at the relationship 
between data structures and the procedures that manipulate 
them. 
Today we are going to add a new aspect to this topic, by 
introducing the idea of mutation. This is the idea of changing or 
altering an existing data structure, rather than simply making a 
copy of it. We are going to look at two examples of useful data 
structures, and show how while mutation carries some hazards 
with it; it also supports very efficient implementation of such 
structures. 

Slide 11.1.2 
To set the stage for our exploration, let's first review what we 
know about data abstractions. First, we know that a data 
structure has a constructor, a way of gluing pieces together. 
Typically the definition of the constructor also involves a 
designation of the type contract of the constructor: what kind 
and how many objects are glued together. 
Associated with the constructor are sets of accessors or 
selectors that get pieces of the object back out. These are 
governed by a contract with the constructor, designating the 
behavior by which pieces glued together can be pulled apart. 
And we typically had a set of operations that used the data 
structures without actually using the details of the 

implementation. The standard form is to use the selectors to get pieces of an existing object, manipulate these 
pieces to create new components, then reassemble these using the constructor into a new version of the data 
abstraction. 
The new thing we are adding is a mutator. This is something that will change an existing data object, that is, go 
into the exist structure and alter pieces of that structure in place, rather than constructing a new version of the 
object with copies of the parts. This is the topic to which we now turn. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 11.1.3 
Let's start by looking at very simple data structures. For 
example, we can actually consider a variable or name to be a 
kind of data abstraction. 
If we take this view, then our "constructor" in this case is the 
special form define. It binds the name (or symbol) given 

by the first argument to the value of the second expression. The 
key point is that we can consider this as a kind of primitive data 
abstraction that pairs up a name and a value. 
The associated selector in this case is very simple. We just use 
the name itself, that is, when we evaluate the name, it looks up 
the value bound to it by the define expression, and returns 

that value, that is, it pulls apart the binding of name and value, 
and returns one component of that binding. 

Slide 11.1.4 
Now we can introduce the ability to mutate that variable, that is, 
to change the binding of the name and a value. Let's look first at 
the expression that accomplishes this, which is the set! 
expression shown. 
This is also a special form, as it doesn't follow the normal rules 
for combinations. The rule for evaluation of this form is: take 
the second argument and evaluate it using standard rules; then 
take the first argument and just treat it as a symbol (i.e. don't 
evaluate it). Now, find the binding of that symbol and change it 
to take on the new value. 
Note that this looks a lot like a define expression, but as 

we will see in a few lectures, there is a fundamental difference. For now, the distinction is that a define would 

create a new binding for the name, using up additional space, whereas set! changes an existing binding. 

Slide 11.1.5 
What does adding mutation do to our language? One of the 
primary effects of adding mutation is that we end up breaking 
our substitution model. This is okay, as we will shortly replace 
it with a better model. 
In fact, the substitution model inherently assumed that we were 
dealing with functional programming, with no mutation or side 
effects. What does this mean? In essence, functional 
programming implies that we can conceptually treat our 
procedures as if they were mathematical functions. Yes, we 
know that we have procedures that deal with things other than 
numbers, but the same idea holds. This means that we could 
treat our procedures as mappings from input values to output 
values, and more importantly, that mapping was consistent, providing the same output value for a particular input 
value, no matter when we did the actual evaluation. 
For example, if I define x to have the value 10, and then I evaluate the expression (+ x 5), I of course get the 

value 15. If I then do some other computation and return to the evaluation of (+ x 5) I still get the value 15. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

This means that this expression always has the same value, no matter when I evaluate it, and the procedure acts like 
a mapping from an input value to an output value, independent of time. 

Slide 11.1.6 
Once we introduce mutation or assignment into our language, 
this model no longer holds. In particular, an expressions value 
now depends on when it is evaluated, that is, what other 
expressions have been evaluated before it. In fact, notice the 
use of the term "when". We have now introduced time into our 
language in a very fundamental way. Now, two expressions 
with identical syntax may have different semantics, because 
they inherently rely on the context surrounding their evaluation. 
To see this, consider the example shown. We again define x to 

have the value 10. If we immediately evaluate the expression 
(+ x 5) we will still get the value 15. Now suppose that at 

some future point, we mutate the value of x to have some new value, 94. Remember that set! finds the existing 

binding for x and changes it. If we then evaluate (+ x 5) we now get 99 as a value, since the value of x has 

changed. 
Notice, we now have two syntactically identical expressions, but with different values or meanings or semantics. 
Thus, time now matters. Adding the ability to mutate a value means that context will influence the values of 
expressions. As we will see, having mutation makes some things much easier to do, but at the cost of greater 
potential for unanticipated effects. 

Slide 11.1.7 
Not only can we mutate names, we can also mutate other basic 
data structures. For pairs, we also have procedures that change 
their pieces. 
To remind you, the constructor for a pair is the primitive 
procedure cons, and the associated selectors are car and 

cdr. Now we introduce two mutators, one for each part of the 

data structure. Their forms are shown on the slide. 
Both of these are normal procedures. Their behavior is to 
evaluate the first argument, which is expected to be a pair (or 
something made by cons). They also evaluate their second 

argument to get a new value or structure. The behavior is to 
then take the pair pointed to by the first argument and change or mutate either the car or cdr part of that pair 
(depending on which expression we are using) to point to the value of the second argument, thereby breaking the 
current pointer in the car or cdr part of the pair. 
Notice the type definition of these procedures. In particular, the return type is unspecified, since the procedure is 
used strictly for the side effect of changing the pair structure. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 11.1.8 
As we will see shortly, having mutation buys us some new 
power in our computational capabilities, but it also raises some 
new problems, which we want to highlight first. For example, 
suppose I create the list of 1 and 2, and give it the name a. I 

also give the name b to the same structure, and remember that 

the second define expression literally binds the name b 
to the value of a, which we know is the pointer to this box-and-

pointer structure. Remember that there is no new creation of 
pairs in this case, b literally points to the same structure. If I 

ask for the value of a or b, in each case I get the list (1 2). 

Slide 11.1.9 
Now suppose that some time later, I evaluate the expression 
shown in red. This gets the value of a which is the list structure 

in the upper right. It gets the value of the second argument, 
which is just 10. It then takes the car part of the box pointed 

to by a, breaks the current pointer in that box, and creates a 

new pointer to the new value, 10. 
So what! Well, notice a subtle effect. If I ask for the value of b 
it has changed!. We get the value of b by tracing out the box-

and-pointer structure, to get (10 2). Yet nowhere in my 

code is there an explicit expression changing b. In this simple 

case, we know there is a tie between a and b, but in more general cases you can see how trouble can arise. Given 

the ability to share data structures, and to mutate data structures, one piece of code could change a value affecting 
some other variable without realizing it. 

Slide 11.1.10 
To use these mutators it is important to understand their affect 
on variables and structures, so that we can work backwards 
from a desired effect to determine the right mutation to cause 
that to happen. For example, consider the simple list structure 
shown here. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 11.1.11 
Now let's suppose I want to change the structure to have the 
form shown in red. What expression do I need to evaluate to 
cause this change? When you are ready to answer, go to the 
next slide. 

Slide 11.1.12 
Here is the answer, and let's reason through why. First, we 
know that we want to change the car part of the second pair 

in the list. So, we need to evaluate (cdr x) to get to the 

second pair, the one shown in blue. Since we want to change 
the car part of this pair, we need to use set-car!. And 

what should the new value be? Just the list (1 2), which we 

know we can create directly. 

Slide 11.1.13 
So it might occur to you to ask: "Given that different parts of a 
list structure can be changed by using mutation, how do we tell 
if two things are equivalent?" We already saw that we could 
have two different names for the same structure, and thus 
changing one name's value could cause the other name's value 
to also change. 
In fact, mutation actually causes us to first consider what 
equivalent means. If we want to know if two names point to 
exactly the same object, our test is eq?. This returns true, if 

the values of the two arguments point to exactly the same 
structure. Another way of saying that is that if we make some 
change to one structure, the corresponding change will be visible in the other structure. Thus eq? provides us 

with the finest level of detail in testing equality. 

On the other hand, if we just want to know if two objects "look the same", that is, they print out the same form, 

then we use equal?. Thus, the test using equal? return true because these two list expressions result in 


structures that look the same. But we know that each call to list causes a new pair to be create so in fact these 


two list expressions create different box-and-pointer structures, and are not eq?. Thus, we have two different 


levels of granularity in deciding equivalence of structures. 




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 11.1.14 
These ideas of mutation and testing of equality raise some 
interesting issues. For example, if we mutate an object, do we 
still have the same object when we are done? The answer is yes, 
provided we maintain the same pointer to the object. For 
example, if we have some list structure with a pointer to its 
beginning, and we then mutate the contents of some of the cells 
in the structure, so long as we keep hold of the pointer to the 
beginning of the structure, we consider it to be the same. Its 
value has changed, but the object's identity is maintained. 

Slide 11.1.15 
This tells us how to keep track of a particular object. A related 
question is deciding when two objects share a common part. 
The answer is that if we mutate one object, and see the same 
change occur in the other object, then we can deduce that these 
objects share parts. Because of our notion of equality as 
pointing to the same object, this means that changing that 
shared object through one name will be reflected when seen 
through the second name. 

Slide 11.1.16 
So what we see is that introducing mutation into our language 
has caused us to change how we think about equality, how we 
think about the finest level of detail in our representations. That 
has raised interesting issues about identity, equivalence, 
equality and sharing of structure. 

Slide 11.1.17 
To see if you are catching on to this, here are two definitions 
for list structure, with the names x and y. What is the value of 

x after each sequence of evaluations? When you are ready, 

move on to the next slide to check your answers. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 11.1.18 
When we evaluate the set-car! expression, we first get 

the value of x, which we know points to the top list structure. 

We also evaluate y, which points to the second list structure. 

Then, we find the car box of the structure pointed to by x, and 

break the existing pointer in that box. We replace it with a 
pointer to the value of y, namely the second list structure as 

shown. 
If we now evaluate x, we can see it points to a list of two 

elements. The first element happens to be a list of two elements, 
1 and 2, and the second element is just the number 4. Thus, the 
value of x prints out as shown. 

Slide 11.1.19 
Now remember that time becomes important once mutation is 
allowed. Thus the change we have just made to x stays in place 


when we go to evaluate the next mutation. This says to get the 

value of y, which still points to the second list structure, and 


we break the pointer in the cdr part of the cons pair pointed 


to by y. In its place, we insert a pointer to the value of the 


second argument, which is just the cdr pointer of the cons 


pair pointed to by x. 


If we then evaluate x again, we now get the form shown, 


simply by tracing through the list structure. Notice that due to 
the sharing of structure, the value of x has changed, even though no explicit expression involving a change in x 
was evaluated. 

Slide 11.1.20 
So here is a summary of the key points of this part of the 
lecture. 

6.001 Notes: Section 11.2




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 11.2.1 
Now, lets see how mutation can be used to build efficient data 
structures. We are first going to build a very useful data 
abstraction without mutation, then see how mutation changes its 
behavior. 
The abstraction we are going to build is a stack, and it behaves 
just like a stack of dishes in a cafeteria. You can push a new 
plate onto the top of the stack and you can remove a plate from 
the top of the stack, but these are the only two operations you 
can execute on a stack. This is also referred to as a last in, first 
out data structure, for the obvious reason. 

Slide 11.2.2 
Here is our data abstraction template for a stack. Our 
constructor creates an empty stack, and our single selector gets 
the value of the top element of the stack. 
The operations on the stack will help change its status. We have 
an operation for pushing a new element onto the top of the 
stack, returning a new stack. We have an operation for popping 
the top element from the stack, and returning the new, smaller 
stack. And we have a predicate for testing whether the stack is 
empty. 
Notice that the selector gets the value of an element of the 
stack, while the operations create new stacks as a whole. 

Slide 11.2.3 
To be careful, we should define the contract for a stack, 
especially the relationship between the constructor, the selector 
and the operations that manipulate a stack. Here is a somewhat 
formal definition, but we can trace through the intuitive idea. 
If we let s be a stack constructed initially to be empty, and we 
have performed i insertions, and j deletions, then here is the 
contract on the stack's behavior. 
If we have tried to do more deletions than insertions, this must 
be an error; we can't more things out that we put in. 
If we have made exactly the same number of insertions and 
deletions, then clearly the stack should be empty, and trying to 
either get the top element or delete something from the stack 
should be an error. 
If on the other hand we have made more insertions than deletions, then clearly the stack should not be empty. More 
importantly, if we insert something, then delete it, the top element of the stack after this pair of operations should 
be the same as it was before this pair of operations. That is, nothing has changed in the stack below this point. 
Finally, if we have a legal stack, then if we push an element onto the stack and look at the top element of the stack, 
we see exactly this element that we just pushed. 
So we see that the stack contract describes exactly the "last in, first out" behave we want. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 11.2.4 
Having defined a set of operations on our abstraction, and a 
contract on the behavior of the abstraction and its associated 
operations, we can actually implement this ADT. Our first 
strategy will be to treat a stack as a list. 

Slide 11.2.5 
For example, this list could represent a stack, where a is the 
most recent thing pushed onto the stack, with earlier pushed 
elements consecutively arrayed down the list. 
Then to insert and delete elements from the stack, we simply 
add things to the front of the list, or take the cdr of the list. 

Slide 11.2.6 
So here is an implementation that uses lists to incorporate this 
idea. Note how the constructor and predicate simply build on 
the underlying use of a list. 
Insertion simply conses a new element onto the existing stack 
(or list), returning a new list with that element at the top of the 
stack (or front of the list). 
Notice the defensive programming used for deletion or 
checking the top, in which we ensure we have a legal structure 
before attempting to access the list structure. If we do, then we 
either use car to get a pointer to the first element, or we use 

cdr to get a pointer to everything but the first element. 

Check to convince yourself that the contract holds for stacks, by building on the contract for list operations. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 11.2.7 
While this looks fine, this implementation strategy has a 
problem: our stacks do not have an identity. What does this 
mean? 
Well consider the example shown. I can first create a stack, and 
give it a name. Now I insert the element a into that stack, and 
you can see it returns for me the stack with only the element a 
in it. But if I ask for the value of s I get back the empty list, not 
this stack? Unfortunately while I created a new list when I did 
the insertion, I didn't actually change the value pointed to by s, 
and thus that remains the empty stack. 
Worse yet, I can manipulate pieces of the stack directly. If I 
insert b into s, I should get a stack with b and a in it. But I can 
mutate the name of the stack to point to only part of this stack, thus violated my contract. The problem is that I 
have not isolated the stack from outside use. I would really like the stack to keep its identity, and to be 
manipulated only by the contract operations, and we will turn to that in the next section. 

6.001 Notes: Section 11.3 

Slide 11.3.1 
The first thing we need to do is practice defensive 
programming, that is, put a tag at the front of the structure to 
identify it. One additional advantage is that the identity of this 
structure will remain the same, even if pieces of it mutate. 

Slide 11.3.2 
What does that mean? Well, putting a tag on the front in the 
standard way would result in our object consisting of a list 
whose first element is the symbolic tag, and whose cdr points 

to the actual contents of the stack. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 11.3.3 
Now, if I decide to delete an element from this stack, my 
operation should get to the actual stack (everything but the tag), 
mutate that structure to drop the first element, and reattach that 
stack to the tag. Notice that by doing this, s still points to the 
same structure, that is to the cell with the symbolic tag and a 
pointer to the stack contents. This fixes the problem I saw 
previously, by maintaining a notion of the identity of the stack. 

Slide 11.3.4 
Notice that this is really a change in the contract. We should 
really advise the user that the stack is mutating, as this is 
exactly what we have proposed here. We are proposing to 
mutate the stack to preserve the pointer from the stack's name to 
the tagged list, while mutating the part of the list that represents 
the stack's contents. 

Slide 11.3.5 
So let's change our implementation to capture this idea. 
First, our constructor must now create a tagged representation, 
where the actual contents are still an empty list. Note that this is 
gluing together two different things, a symbolic tag, and an 
actual stack. 
Given that, we can now create a predicate for stacks. Notice the 
defensive programming in which we first ensure that the 
argument is a pair or list, before checking to see if the first 
element is the type tag. 
We can also build our predicate for the empty stack. Notice that 
it first checks to see that we have a tagged data structure of the 
appropriate kind. If we do, then we don't have to further check 
to see if the object is a list that happened as part of the type check. So we can immediately proceed to the cdr of 

the argument, and check its contents. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 11.3.6 
Our operations on stacks will now be mutators, which I will 
denote by appending a ! to the end of the procedure's name. 

Insert! first does some defensive programming; to make 

sure that the argument passed in is labeled as a stack. 
If we have a stack, then notice what we do. We get the cdr of 

the stack, which is the pointer to the list representing the actual 
contents of the stack. We cons a new element onto that list, 
putting that element at the front of the stack. Cons returns a 

pointer to the beginning of this new list, and we now mutate the 
cdr pointer of the stack itself to point to this list. Thus, we 

have changed the contents of the stack. Finally, we return the 
value of the argument, since that gives us the labeled data structure. 
Notice how identity is preserved in this manner. The argument passed in points to some list structure, and when 
done, we return the same pointer. The only issue is that some of the contents within that list have changed. 

Slide 11.3.7 
Delete has a very similar form, which you can check through. 
Use a box-and-pointer diagram to check your reasoning. 

Slide 11.3.8 
To get the top element of the stack, we just check that we have 
a legal stack, and then get the value at the top of the contents of 
the stack. 
Notice how mutation allows us to create structures that are 
efficiently represented, yet allow us to maintain the identity of 
data objects. 

6.001 Notes: Section 11.4




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 11.4.1 
We have seen how mutation can give us different ways to build 
data abstractions. Let's push further on this idea by looking at a 
new data abstraction, called a queue. 
A queue behaves like a line, say the line in front of a movie 
theatre. Thus, one adds things to the end of the line, but takes 
things from the front of the line. This gives a different behavior 
than a stack. Remember that a stack was a "last in, first out" 
structure, whereas a queue is a "first in, first out" data structure. 
In other words, the first element placed in a queue will be the 
first element taken out of the queue. 

Slide 11.4.2 
Here is the template for our data abstraction, with a constructor, 
a selector for getting the front element of the queue. We will 
have two operations that change the queue (though in this 
version, they won't use built in mutation to do this). The first 
will insert an element at the end of the queue, but will do this 
by actually making a new queue. The second will return a new 
queue with the first element removed. And we will have a way 
of testing whether the queue is empty. 

Slide 11.4.3 
As with stacks, we will have a contract that governs the 
behavior of the abstraction. With the notation shown, we can 
see that the behavior can be defined as follows. 
If we try to take more things out of the queue than we have put 
in, we will get an error. 
If we have taken out exactly as many things as we have put in, 
then the queue is empty, and trying to either remove something 
or look at the front of the queue will be an error. 
Finally, if we have put more things into the queue than we have 
removed, and we have removed j things, then the element at the 
front of the queue will be the j+1st thing inserted, i.e., the next 
one in order. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 11.4.4 
Just as we did with stacks, let's start with a simple 
implementation of a queue. In particular, we can just represent 
a queue as a list of elements. Here we can decide that the first 
element of the list also represents the first element of the queue. 
In that case, getting the front of the queue is easy; it is just the 
car of the list. Similarly, deleting an element from the queue 

would be easy, we would just take the cdr of the list to 

remove the first element of the queue. 
But notice that to add an element to the queue is going to take 
some effort. To do this, we need to place that new element at 
the end of the list, and to do that; we need to first copy the 
entire list until we reach the end, then "cons" onto the last 

element of the list a pointer to a list containing the new element. This will give us the correct structure, a list in 
order, with the new element as the last thing in the list. 
So how do we implement this? 

Slide 11.4.5 
Since we are using a list as our internal representation, our 
constructor just makes an empty list as an empty queue, and 
testing for an empty queue uses the associated list predicate. 
Finding the front of the queue or deleting the front element 
from the queue have a similar form. We first check that we 
have a non-empty queue. If we do, we can use the associated 
list operation. We use car to get the first element, which we 

know is the front of the queue, or we use cdr to get the rest of 

the queue, except the first element. 

Slide 11.4.6 
Inserting an element into the queue is a bit more of a pain in 
this implementation. Remember that this element has to go at 
the end of the current list representing the queue. Thus our 
procedure recursively walks down the list representing the 
queue, until it reaches the end, at which stage it creates a list 
representing a queue with this element. Notice how we make a 
copy of the entire queue so that the result is a new list, with that 
element now at the end. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 11.4.7 
You can now see that while this implementation satisfies our 
contract for a queue, it comes with a cost in terms of efficiency. 

Slide 11.4.8 
Let's actually measure that cost. If we have a queue of length n, 
let's measure the efficiency in both time and space for 
manipulating such a queue. In terms of time, we want to 
measure the number of primitive list operations, that is, 
cons, car and cdr evaluations that are needed, and in 

terms of space, we want to measure how many new pairs or 
cons cells are created when we use one of our queue operations. 

Slide 11.4.9 
Let's start with the easy ones. To find the front element of the 
queue takes time that is constant in the size of the queue, since 
we just use car to get at it. Similarly, to delete an element 

from the queue, we just use cdr, which is also constant in 

time. Both operations are also constant in space, since no new 
cons cells are generated. 

Slide 11.4.10 
As we have already suggested, though, insertion into a queue is 
more expensive. As we have seen, to add a new element, we 
have to walk our way down the list, one element at a time, until 
we reach the end of the list. Thus, this operation will take time 
linear in the size of the list. And since we must also make a 
copy of that list as we do this, we cons up a number of new 
pairs that is also linear in the size of the list. 
The question is whether we can do better than this? 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 11.5 

Slide 11.5.1 
Let's go back and look at queues again, now seeing how 
mutation can allow us to build a more efficient implementation 
of this data structure. 
As before, our constructor will build an empty queue and our 
accessor will get out the front element of the queue. 

Slide 11.5.2 
The big change we are going to make deals with how we add 
things or remove things from the queue. Rather than making a 
copy of the queue, as we did before, in order to add something 
to the end, instead we are going to directly modify the list 
structure representing the queue, changing the pointer at the end 
of the old queue to now point to the most recent insertion. Thus, 
we will mutate the existing structure rather than copying it. 
Similarly, we will use mutation for deletion of elements in the 
queue, so that the internal list representation will be directly 
modified in this case as well. 

Slide 11.5.3 
Here is our strategy. As in the previous case, we will attach a 
type tag to the front of the structure, as a defensive measure. 
This will let us identify when an object is a legal queue. This 
will also provides us with a method for maintaining the identity 
of a queue as we mutate its contents. 
The second thing we will do is build a structure that 
incorporates a bit more information than the last version. This 
structure will contain a pointer to the list that represents the 
contents of the queue, but it will also include a pointer to the 
front of the queue and a pointer to the rear of the queue. 
We have lots of choices for how to capture this information, but 
the easiest one is that shown in the diagram. Thus, a queue data 
abstraction points to a list, whose first element is the type tag. The second part of that pair points to a new pair, 
which contains two important pointers. The car points to the pair at the beginning of the list representing the 

contents of the queue. The cdr points to the pair at the end of that list. Notice that the list is still used to represent 

the queue's contents, but now we have direct access to the first and last element in the queue, and this will allow us 
to build much more efficient implementations of queue operations. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 11.5.4 
Given that idea, we will need some procedures to manipulate 
the parts of a queue. These procedures should be hidden inside 
the abstraction. This means that they should only be used within 
procedures designed to manipulate the queue, and they should 
not be accessible to consumers of queues. 
First, we will need procedures that get the pointer to the first 
and last pair in the list of contents. Given our design on the 
previous slide, we can see that these two procedures will strip 
off the type tag, (using cdr) then access the contents of the 

car or cdr part of the resulting pair. This will give us a 

pointer to the cons cell at the beginning or at the end of the list 
representing the queue's contents. Note, it does not give us the 

actual value; it gives us a pointer to the cons cell, for reasons that will be clear shortly. 

Slide 11.5.5 
Given that we have access to the front and rear cells in the list, 

we also want the ability to change them, so we have two 

mutation functions. 

To change the front pointer of the queue, we will do the 

following. First, we take the cdr of the queue. Remember that 


this gives us the box containing the front and rear pointers. We 
then mutate the car of that box (the front pointer) to now 

point to a new item, which we assume is the beginning of a list 
of elements. A similar form holds for changing the rear pointer 
of the queue. 

Slide 11.5.6 
Using these ideas, we can build a much better queue 
implementation. 
To create an empty queue, we need to set up this structure. Note 
that we first "cons" together two empty lists, to represent front 
and rear pointers to an empty queue. Then we attach the type 
tag to the front of this, and return this list structure as our queue 
representation. You might draw a box-and-pointer diagram to 
convince yourself that this generates the structure we illustrated 
in the previous slide. 
With this defensive programming construct in place, we can 
utilize it when checking for a queue. We confirm that we have a 

pair, and then check whether the car is the tag for a queue. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 11.5.7 
To see if we have an empty queue, we can now be clever. We 
first check to be sure the argument is a queue, using our 
defensive programming style. Then, we use our internal 
procedure to extract the front pointer of the queue (the pointer 
to the beginning of the list of elements) and check to see if it is 
empty. 

Slide 11.5.8 
Finding the front of the queue (that is the first element) is 
almost the same. The only difference is that once we find the 
pair pointed to by the front pointer, we extract the car to get 

the actual element. 

Slide 11.5.9 
The tricky part arises when we want to actually manipulate the 
queue, when we want to modify the structure representing the 
contents of the queue. To insert a new element into the queue, 
we first create a list of just this object. Notice that this becomes 
the portion of the list that should be end of the entire list of 
contents. 
If the queue is currently empty, then this new list is exactly 
what I want for my queue, so I simply change the front and rear 
pointers of the queue to point to this cell (since there is only one 
element, it is both the front and rear of the queue). Then I return 
the pointer to the actual queue. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 11.5.10 
If the queue is not empty, then I need to execute the following 
steps. First, I get the rear pointer of the queue (remember that 
this is a pointer to the last cons cell in the list representing the 
queue's contents). Then, I mutate the cdr of this cell (which is 
currently the empty list) to point to the new pair. Notice what 
this does, it results in a list one element longer, but without 
having to make a copy of the list or walk down the length of the 
list. 
Finally, I need to preserve the correct information about the 
queue, and my rear pointer is now out of date. So I modify that 
pointer to now point to the last cell in the new list. And then I 
return the pointer to the whole queue structure. 

Slide 11.5.11 
Deleting an element of the queue is very similar. If the queue is 

empty, we complain. 

Otherwise, we get the front pointer of the queue (this is the first 

cons cell in the list) and we take its cdr, which thus points to 


the rest of the list, other than the first element. We then modify 

the front pointer of the overall structure to point to this new list, 

now removing the first element from view. 

To convince yourself this is correct, try an example with a box-

and-pointer diagram. 


Slide 11.5.12 
What are the orders of growth now? Well in this case the two 
previously expensive operations are now both constant in time 
and space. Thus, mutation has given us a more efficient way of 
representing the same data abstraction. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 11.5.13 
Here is a summary of the key points of this lecture. 


	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved


