
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 10.1 

Slide 10.1.1 
Over the past few lectures, we have introduced the concepts of 
data abstractions, types and aggregate structures. In this lecture, 
we want to explore the idea of pulling those pieces together to 
explore data abstractions in more depth. To do this we will 
examine a couple of particular examples, but we want you to step 
away from these details to see how in designing any data 
structure we have a tradeoff to consider. That tradeoff is between 
constructing concrete structures that are very efficient but open 
to misuse versus abstract structures that nicely separate the 
implementation from its use but which may suffer in efficiency 
as a consequence. 
This may sound a bit odd. The typical instinct for a less 
experienced programmer is to opt for efficiency. But in fact, if one is writing code for a large system that will be 
used over extended periods of time and will involve components from a large number of coders, then robustness, 
modularity and ease of use and maintenance are typically much more important that speed. 
In this lecture we are going to do an initial exploration of these ideas. We are going to examine three different kinds 
of data structures that move from concrete to abstract, culminating in the creation of a table data abstraction. We will 
also see how design choices influence the implementation of an abstract data structure, with different kinds of 
performance. And we will see that the fundamental issue in designing abstract data types is using this methodology 
to hide information, both in the types and in the code. 

Slide 10.1.2 
So here is where we are headed. We would like to build an abstract 
data structure of a table. Conceptually a table is just a collection of 
bindings, and we are free to consider different ways of structuring 
that collection. What's a binding? It is just a pairing of a key and a 
value, or in other words, the key tells us the entry into the table, or 
how to find the binding in the table, and the value is the thing 
actually associated with that key. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.1.3 
We can define the behavior that we want a table to have, without 
having to consider the specifics of the implementation. In 
particular, we want the following abstract interface between the 
user of a table and the actual table itself. 
First, we need a constructor for building a table. We will just call 
that constructor, make. We ignore the details of how make works. 
We can just use make as a black box to construct a table for us. 
We need a way of inserting a binding into a table. We will assume 
that inserting a binding replaces any previous binding for that key 
in the table. Note that we don't specify whether that old binding is 
actually removed from the table, or only if the old binding will no 
longer be found by procedures that search the table. 
Why is this relevant? Well, notice that there is likely to be a tradeoff between efficiency in space (whether we keep 
old bindings around) versus efficiency in time (how quickly we can add new bindings and whether keeping old 
bindings in the table will affect the speed of searching the table for bindings). 
Note that at this stage of our design, we have simply specified that put! should take a key and a value, create a 
binding of those two pieces of information, and install that binding into the table in such a way that searching the 
table for that key will find this binding and not any previous ones. 
We will also need a way of getting values out of the table. Thus, we will have another abstract interface, called get, 
that takes as input a key, looks up the key in the table, and returns the corresponding value. Note again that we have 
said nothing about how to implement this operation, only what behave we expect as a user of tables. 

Slide 10.1.4 
This is a very important point. The definition we have just 
provided of an interface to a table really does define the abstract 
data type of a table. From the user's perspective, using these 
interface abstractions is sufficient to allow them to use the table. 
The details (the code we are about to show) will be an 
implementation of this abstract data type, but there can be many 
alternatives that also satisfy the contract inherent in this description 
of the behavior of bindings in a table. 

Slide 10.1.5 
Before we start exploring different kinds of data structures that will 
lead to the implementation of a table, let's first think about why 
tables might be of value to a user. 
An obvious example is keeping track of personnel information. For 
example, suppose you have just started a new "dot com" company. 
You will want to keep track of your employees, and a table is an 
obvious way to store data about them. You might start with 
information keyed by the names of the employees. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.1.6 
Associated with each name key, we might have another table that 
lists information about that person: their age, their salary, and so 
on. And associated with each of those pieces of information might 
be other tables, for example, the salary information for previous 
years. 

Slide 10.1.7 
Not only do our table data abstractions need to be flexible enough 
to allow for other tables to be entries in a table, we may have other 
ways of gathering information together in a table. For example, we 
might have another table that lists employees by age. 

Slide 10.1.8 
Clearly we can build a table where the keys are the ages of the 
employees. Here, however, the value associated with a key should 
be a list whose elements point to the entries in other tables that 
capture all the data about each employee. 
So our tables need to be very flexible in terms of what information 
they can store. 

6.001 Notes: Section 10.2




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.2.1 
Let's start by looking at the idea of pairing keys and values, as 
this is going to be the heart of a table implementation. Our goal 
is to see how different choices of implementation influence the 
behavior of the table. 
A traditional structure for doing this is called an a-list or an 
association list. This is a list in which each element is itself a list 
of a key and a value, or in other words, it is a list of lists, all of 
which are two elements long. 

Slide 10.2.2 
So for example, if we want to represent this table (and notice that 
this is an abstract version of a table, that is, a binding of x to 15 and 
y to 20) as an association list, we can do so as the illustrated list of 
lists. Each of the inner lists is a two-element list of a key and a 
value. 

Slide 10.2.3 
Or to do this a little more concretely, we could represent this 
particular table with the illustrated box-and-pointer diagram. This 
illustrates the nice structure of this system, in which each element 
of the top level list is a binding, and each of the bindings is just a 
two-element list of a name and a binding. 

Slide 10.2.4 
If we were to make the design choice to use a-lists as our 
representation for a table, then we just need to add a couple of 
operations. First, we will need a way to find an entry for a key in 
the a-list and returning the associated value. 
Here is one way to do this. Notice how it walks down the list, 
checking the key against the first element of the first element of the 
list (this is what caar extracts, which you can check by looking 
back at the box-and-pointer structure). If we get to the end of the 
list, we return false to indicate the key is not present. Notice 
how we use equal? to check the equality of the key and the 
element. And notice that when we do find a matching key, we use 
cadar to extract the second element of the first element, which is 

exactly the value associated with this key. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.2.5 
As an example, let's give a name to our simple alist (noticd the use 
of the quoted list structure to create this list of lists). If we then 
evaluate (find-assoc 'y a1) (note the use of the ' to get the 
symbol y rather than any value associated with it) we get out the 
expected value of 20. Trace through the code and the box-and-
pointer structure to convince yourself that this is correct. 

Slide 10.2.6 
Adding a new entry into this a-list is pretty easy. We'll just "cons" 
it onto the front of the existing list. All we have to do is take the 
key and value to be associated together, put them into a list, then 
put that list at the front of the existing a-list. Since the a-list is a 
list, consing something onto the front of the list, by the closure 
property, gives us a new list. 
Note that in this implementation, we don't actually remove any 
prior binding of a key from the representation. We simply shadow 
the old binding with the new one, meaning that the procedure for 
looking up a binding will always find the new one first, since it is 
at the beginning of the list. So what does this do to the efficiency 
of find-assoc? Clearly the more things we add, the more things 

we have to search through to find a binding different from those added. 
Slide 10.2.7 
Nonetheless, this is a nice implementation. Thus, we can add a new 
binding to our old table, giving it a new name (which we need to 
do because we need a way to refer to the table). Now, a2 is a list 
of 3 elements, with the new binding of y at the front and our 
original binding further down the list. 
Looking up the binding of y in this a-list will give us the value 10 
that is, the new binding value. 

Slide 10.2.8 
This seems like a reasonable implementation, but let's think about 
this structure. In particular, this is not an abstract data type. And 
here is why: ... 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.2.9 
...first, we have no constructor. We are just building a list using list 
operations or quotes. This may seem like a neat efficient hack, but 
it has an important impact. 

Slide 10.2.10 
In particular, there is no abstraction barrier. That means there is no 
way of separating out the implementation and manipulating of a-
lists from the use of the a-list as a table. In fact, a-lists are designed 
that way and the definition from the Scheme manual clearly states 
this. A-lists are intended to just be exposed lists. 

Slide 10.2.11 
As a consequence, the implementation of the table is exposed, 
meaning that the user can operate on the a-list just using list 
operations, rather than being required to use operations designed 
for tables. The example shown seems very convenient, using filter 
directly on the list, but this is a dangerous thing to do. 

Slide 10.2.12 
So why should we care that a-lists are not an abstract data type? 
The primary reason is the loss of modularity. Good software design 
always involves programs that are created from units that are easily 
glued together, are easily replaced with other small sized units, and 
can be treated as black box abstractions. If done right, we can 
easily change one module without having to change anything else 
in the system. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.2.13 
And why does that matter here? Because a-lists have poor 
modularity. Since we have exposed the "guts" of the 
implementation of tables to the outside, this means that other users 
can write operations using filter and map directly on the a-lists. 
There is no way of separating the use of the table from the 
implementation of the table. If we later decide to change the 
implementation of the table, we will be in trouble because these 
operations are defined based on an assumption about how things 
are implemented, and changing the representation will require that 
we find and change all the operations that manipulate tables. 

Slide 10.2.14 
To achieve modularity, we need to hide information. In particular, 
we want to hide the fact that the table is implemented as an a-list 
from the use of the table itself. 
This has two parts. The first part is that we will create abstractions 
for getting at the parts of the data structure (i.e. constructors and 
selectors) and we will insist that anything outside of the abstraction 
cannot use list operations but must go through the abstract 
selectors and constructors. 

6.001 Notes: Section 10.3 

Slide 10.3.1 
So let's build on this idea. We know that we should be able to use 
a-lists to represent the internal structure of the table, but we 
need to accomplish this hiding of information, that is, the 
separation of the internal aspects of the table from the outside 
world. 
Here is how we will do that. First, we will need a constructor, 
make-table1 (we give it this name in order to distinguish 
different versions of our table abstraction). This simply puts a 
tag at the front of a table structure. Notice how we have 
separately given a name to that tag, a point we will come back to 
shortly. 
Now we can create a get operation on this table by: given a table, 
remove the tag to get the actual table implementation, and then use the procedure designed for a-lists to extract that 
actual entry in the table. This builds on the choice of an a-list as the actual internal representation of the table. 
To put something new into the table, we can again extract the internal representation minus the tag, use the a-list 
operations to add a new value to this internal representation. This returns a new a-list as a value, so we can then glue 
the tag back onto the front of the table. We do this using an unusual operation, set-cdr! which we will discuss in 
detail in a few lectures. Think of this operation as taking the box-and-pointer structure pointed to by the value of the 
first argument, finding the cdr of that structure, and changing it to point to the value of the second argument. Don't 
worry about the details of this new operation. We simply will use it create a new version of a tagged table, while 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

preserving the association between a name for a table and the actual representation. 
Slide 10.3.2 
So let's see how this works. First, we will create a table with name 
tt1 by using our constructor. 

Slide 10.3.3 
Here is what that looks like. The name tt1 points to a list whose 
car is the symbol table1 (our tag) and whose cdr is just the 
empty list (i.e. there is nothing in our a-list yet). 

Slide 10.3.4 
Now, let's put a new binding of a key and a value into our table, for 
example, the binding of y and 20. 

Slide 10.3.5 
What happens when we use this operation to insert something? 
Remember that table-put! uses add-assoc, which extracts 
the a-list from the tagged representation, (in this case an empty 
list), and then creates a binding of the arguments (remember that is 
a list of two elements) and finally "conses" that onto the front of 
the a-list. Since this is the empty list, it creates a top level list of 
one element, as shown. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.3.6 
And then we use this new operation, set-cdr! to take the cons 
pair pointed to by tt1, and mutate or change it's cdr to point to 
this new structure, that is to the value returned by add-assoc. 
Notice what this gives us. We now have a new table. It has a tag on 
the front, and it has an a-list at the back, which currently has one 
binding within it. 

Slide 10.3.7 
Let's add another binding, x and 15, to this same table. 

Slide 10.3.8 
Looking back at the code, you can see what this should do. Add-
assoc first takes the internal representation for the table (i.e. 
removes the tag) getting access to the structure shown in blue. It 
then creates a new binding, a pairing of x and 15, creating a 2 
element list, and then "conses" this onto the front of the existing a-
list. This is shown in red. This new structure is our new a-list, and 
it has within it two bindings, each a separate 2 element list. 

Slide 10.3.9 
Then we once more use the set-cdr! operation to take the pair 
pointed to by tt1 and change its cdr part to point to the value 
returned by add-assoc, i.e., this new structure. This gives us a 
new a-list associated with this table. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.3.10 
If we get a value out of this table, say the pairing associated with 
the key y, then table-get does a very similar thing. It removes 
the tag, getting the pointer to the actual a-list (shown in light blue), 
and then uses find-assoc, the operator associated with the a-
list, to find and return the value associated with this key. 

Slide 10.3.11 
So this gives us a simple implementation of a table. It has a tag at 
the front to identify it, it has some constructors and selectors to get 
at the internal representation of the table, which in this case is an a-
list, pairing up keys and values. 

Slide 10.3.12 
So what is it that makes this an abstract data type? Is it the fact that 
that it has a tag? While this is careful programming, it does not 
suffice to create an ADT. 
Is it the fact that it has a constructor? While having a distinct 
interface is good programming, this also does not suffice to create 
an ADT. 
Similarly, the fact that it has accessors or selectors, and mutators 
(the set-cdr!) is useful, but not sufficient to define an ADT. In 
fact, a-lists also had these properties, but we argued that they were 
not ADT's. 

Slide 10.3.13 
In fact, the key issue is the isolation of the abstraction from its 
users. We can't use any list processors, like car, cdr, map or 
filter directly on the table. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.3.14 
This is because the representation for table is not an exposed a-list. 
We have hidden the internal representation for the table from the 
users or consumers of tables. As a consequence, this abstraction 
barrier would allow us to freely change our internal representation 
of a table, without requiring a user to make any changes to their 
code that uses tables. This is the key point. We have hidden away 
the a-list from the user. If we change our choice of representation, 
nothing will have to change on the outside. 

Slide 10.3.15 
Because this is a key point, we want to generalize it. By creating a 
distinct data structure type for tables, we have in essence hidden 
information behind a name. We have made that name opaque to 
the user. 

Slide 10.3.16 
What does this mean? Well, it says that by creating a new type in 
this way, its name hides the details. For example, suppose I give 
you a new data type, and simply tell you that it exists, but not 
anything about its details. For example, lets call it MyType. 
Further, lets suppose we have two procedures with the indicated 
type contracts. M1 maps a number to one of these objects of type 
MyType, and m2 takes one of these types of objects as input, and 
does something to it. Given just that information, we can ask the 
following questions. 
Which of the two indicated expressions is acceptable? Clearly the 
first expression is fine. The type of object returned by m1 is exactly 
what is expected by m2. Even though we know nothing about the 

type, the contract (or the opaqueness of the name) allows us to remove those details from consideration, and just 
consider the overall behavior of the procedure. On the other hand, the second expression should "bomb", because 
here the type of object returned by m1 is not appropriate for a procedure like car. We have no way of knowing if 
the returned value is a pair or not. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.3.17 
In essence, the opaque name and the infrastructure hidden behind 
it, guarantee clean performance for this particular data type. As a 
consequence, we can change that infrastructure, without affecting 
anything on the other side of that opaque name. 

Slide 10.3.18 
So, for tables here is everything that a user needs to know. 

First is the opaque type name, a thing called Table1 that has 

inside of it two arguments of types k and v. Or said another way, 

this type is created out of pairings of k's and v's, but we haven't 

said anything about how this is done. 

Our constructor for this type takes no arguments as input, and 

creates an instance of this type of object. Note that the elements 

paired within this table can be of any type. 

Our operation for putting things into the table takes a table object, 

and a k and a v as input. It doesn't return any value, since its role is 

to change the bindings within the table object. 

And our accessor takes one of these abstract table objects, and a k


and either returns the associated v or the empty list to signal that no binding was found. 

Note again, this is everything that a user of tables needs to know. And nothing is said about a-lists or cons pairs or 

anything else. This simply defines an interaction between the abstract data type and the elements within it. 

Slide 10.3.19 
Hiding below that abstraction barrier, or if you like behind that 
opaque name, is the actual implementation. Here we have made a 
choice. Specifically, we have decided that a table will be a pairing 
of a symbol (for our tag) and an a-list (for the actual bindings). 
Note that we can alsor provide a formal specification of an a-list as 
a list of elements each of which is a 2 element list, as shown. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.3.20 
Here is a summary of the key messages from this part of the 
lecture. 

6.001 Notes: Section 10.4 

Slide 10.4.1 
Now let's look at how the data abstraction allows us to alter the 
internal representation of tables, without affecting any consumer 
of tables. This, after all, has been our key point all along. 
To motivate this, suppose we build a table using our existing 
abstraction, but then observe that most of the time spent in using 
the table is actually spend in the get operation. In other words, 
as you might expect, we spend most of our time retriveing 
information from the table, rather than putting things into the 
table. If this is the case, it would be nice if we could devise an 
implementation in which get operations are very efficient, 
while preserving all the contracts of the table. 

Slide 10.4.2 
In fact, there is a standard data structure for fast table lookup, 
called a hash table. The idea behind a hash table is to keep a 
bunch of association lists, rather than a single one. We chose which 
association list to use, based on a function called a hash function. 
That hash function takes our key as input, and computes a number 
between 0 and the number of a-lists that we are using, and that 
number will tell us which a-list to use to look up a value. 
You should already begin to see why this idea should lead to a 
faster implementation. Rather than having to search one big a-list 
to find a pairing, we should only have to search a much smaller a-
list. This should be faster, so long as the cost of computing the 
hash function is not too large. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.4.3 
What does a hash function look like? As noted, it should take as 
input a key and compute a number between 0 and N, for some fixed 
N. 

As an example, suppose we have a table where the keys are points, 

i.e. x and y coordinates of points in the plane, such as the points we 

might use in a graphics display. Associated with each point will be 

some graphic object that passes through that point. 


Slide 10.4.4 
For example, if in my graphics system includes I want to move 
some object on the screen, I would like to know which points are 
covered by that object, as I am going to have to redraw those 
points. A nice way to do this is to take a point and find all the 
objects that cover that point, so I want to use the point as my key. 
So how could we design a hash function that takes points as input, 
and returns a number between 0 and N. 

Slide 10.4.5 
Here is a particular example. Given a point (represented by some 
data abstraction) and a specified number N, we can add the x and y 
coordinates of that point and find the sum's remainder modulo N. 
Remember that this means finding the remainder of the number 
after dividing it by N. 
Note that a good hash function is one that evenly distributes its 
keys among the values between 0 and N. For this case, if the points 
are uniformly distributed in the plane, the result will be a nearly 
uniform distribution of output values of the hash function. 

Slide 10.4.6 
So a hash function basically chooses a bucket (out of a fixed set of 
buckets) into which to put an object or from which to extract an 
object. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.4.7 
The underlying idea is that given a key, we first apply the hash 
function, which computes an index (a value between 0 and N-1, 
inclusive). 

Slide 10.4.8 
That index then tells us which bucket, or which set, of things in 
which to look. As we said, if the hash function is well designed, 
then on average we will have to do 1/N of the work that we would 
normally have performed in the straightforward implementation. 
This assumes, of course, that computing the hash function is not 
very expensive. Otherwise we would lose the benefit gained by 
reducing the actual search through the table. 

Slide 10.4.9 
Note that we haven't yet said anything about how the buckets are 
organized. While this has the appearance of a list, we are free to 
choose other representations, as we will see shortly. 

Slide 10.4.10 
The main idea is that if the key is in the table, then it is going to be 
in the association list whose bucket is indexed by applying the hash 
function to the key. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.4.11 
To actually build a hash table, we need an efficient way to gather 
the buckets together. We are still going to represent the contents of 
each bucket as an a-list, but since we have an ordered sequence of 
buckets, we would like an efficient way of structure them. For this, 
we will introduce another common ADT, a vector. This is a fixed 
size collection, where access is determined by an index or number. 
This is a bit like a list, but with two important distinctions. First, 
the size of the vector is fixed at construction time. And second, we 
can retrieve the contents of an entry in the vector in constant time, 
whereas for a list, retrieval was linear in the size of the list. 

Slide 10.4.12 
With that idea in mind, here is the contract for a vector. As before, 
the type is opaque in order to hide the details. We will just denote 
the type of the elements are some arbitrary type, A. Associated 
with this abstract data type is a constructor, and two operations on 
vectors: one that gets an element of the vector, and one that 
changes the contents of a vector at an index. 

Slide 10.4.13 
Examples of the kinds of operations we would expect to see on 
vectors are shown at the bottom of the slide. Note the error 
conditions if we try to go beyond the bounds of the data structure. 

Slide 10.4.14 
This then defines our new data type, a hash table. We have built an 
implementation of it on top of another common data type, a vector. 
We expect the hash table to provide a different kind of behavior as 
it stores and retrieves objects. We now want to turn to the question 
of how we can use hash tables to change the implementation of our 
more general tables. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 10.5 

Slide 10.5.1 
Given our abstract data type of a hash table, let's see how we can 
use it to change the behavior of our more general table 
abstraction. Our goal is to see how we can replace the original 
implementation with a more efficient one, without requiring any 
changes on the part of procedures that use tables as an 
abstraction. 
The main change is in how we construct a table. As before, we 
will use a tag to identify the table, but now when we construct 
the table, we will specify two things: the hash function we are 
going to use within the implementation, and how big a hash 
function we want (i.e. the range of values of the hash function or 
equivalently the number of buckets in our representation). 
Notice what we do here. We list together the tag, the size, the actual hash function, and the set of buckets stored as a 
vector. Of course, associated with this will be the appropriate set of selectors for getting out the various pieces of the 
structure. 
Something to think about, by the way, is for each procedure on this slide, which kind of procedure is it? 

Slide 10.5.2 
With this change, how do we implement get? By contract, we 
need the same inputs to the procedure, a table and a key. Here, we 
will get the hash function out of the table abstraction, and apply it 
to the key and the size of the hash function (also extracted from the 
abstraction). The result will tell use in which of the buckets to look. 
The let form gives us a temporary name for that index. Then, 
just as before, we can use our association list operation to find the 
pairing with the key, now only lookking in the association list 
stored at that index in the set of buckets. 

Slide 10.5.3 
This seems like a lot of code, but stop and look at it. Note that we 
are simply using the selectors of our data abstractions to get the 
pieces needed to look in the right place for our binding. 
Also notice that this procedure has exactly the same type as the 
original get, which is must have if we are going to preserve the 
isolation of use of the abstraction from the implementation of the 
abstraction. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.5.4 
To put something into this new table, we do basically the same 
thing in reverse. Notice how the type is still preserved, as it must 
be. The difference is that inside the procedure we use the selectors 
of the abstraction to get out the hash function, find the right 
assocation list and then add the new binding to that list, and install 
that modified list back into the right bucket. 

Slide 10.5.5 
So let's look at a little example, to see how the behavior of the 
accessors of a table has changed in terms of efficiency but not in 
terms of user interface. Let's create a new table using our 
constructor. As noted, we need to specify both a size and a hash 
function (we will use the one we defined earlier for points in the 
plane as an example). 

Slide 10.5.6 
And here is a representation of the structure that is created by this 
evaluation. Tt2 points to a list, containing the symbolic tag, the 
size, the procedure that computes the hash function, and a pointer 
to an initially empty vector of the specified size. 

Slide 10.5.7 
Now, let's manipulate this structure. Let's insert into the table a 
point and a paired value. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.5.8 
If you look back at the code, you will see that this operation does 
the following. First, it gets the hash function and the size, and 
applies those two things to this key to determine which bucket of 
the vector to use. It then takes the a-list stored at that location, and 
glues to the front of that list a new binding of the input point and 
input value. We expect this to lead to better efficiency, since the 
objects will be distributed among 4 (in this case) different a-lists. 

Slide 10.5.9 
Let's do the same thing with another pairing, inserting this into the 
table... 

Slide 10.5.10 
... and in exactly the same way, this will create a new association 
list hanging off of one of the buckets of the vector. 

Slide 10.5.11 
Now remember that our reason for making this change was to get a 
table that was more efficient in supporting retrieval of information. 
Let's see what happens if we retrieve a value from the table, using 
the example shown in purple. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.5.12 
If you look back at the code, you will see that get for this kind of 
table takes the key, the size, and the hash function, and computes 
an index. In this case, we will extract the entry at the third bucket 
of the vector. Note that for a vector we can go straight to that 
bucket (in constant time) and retrieve the a-list stored there. Then, 
we used normal a-list operations to find the value paired with the 
key in that list. This will return the avlue 20. 
A key thing to note is that we are now searching down a much 
smaller a-list, and we expect in this case to do only 1/4 the amount 
of searching of the original case. 
A second key thing to note is that from the point of view of the 
user none of this detail is visible. Only the change in efficiency 

will be noticed. 
Slide 10.5.13 
So what have we accomplished? We have built an abstract data 
type, a table, and have shown two different implementations of that 
ADT. The type contract for the ADT is the same in both cases, so 
the user can treat each implementation identically. At the same 
time, our motivation for having different implementations was to 
support different efficiencies. So which version is better? 

Slide 10.5.14 
I have actually lead you down a garden path, since I originally 
implied that the second version would be better. In fact, the 
question of which version is better depends on what use you intend 
to make of the table. 
For example, table1 has a very fast constructor and put! 
operation. But its get operation is order O(n), where n is the 
number of calls to put!. This is because it will have to walk down 
a long association list to find the binding, where the lenght is the 
number of things put into the list. 

Slide 10.5.15 
Table2, on the other hand, takes a different trade off. Its 
constructor is going to use more space because it has to build a 
vector of the specified size. Note that its put! operation must 
compute a hash function, and thus the speed will depend on the 
speed of that function. The get operation also has to compute the 
hash function, then search down a smaller size list. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 10.5.16 
This then says that table1 will be better if we are doing very few 
gets or if the table is very small. Table2 will typically be better, 
but we have to be sure that we can accurately predict the size of 
vector needed and find a hash function that uniformly distributes 
keys over that range in an efficient manner. 

Slide 10.5.17 
So why go to all this work? First, we have seen a convenient new 
data structure. More importantly, we have seen how we can 
separate the use of an ADT from its implementation. The lesson to 
take away is how using opaque names and hiding of information 
lets us accomplish this separation. 


	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved


