
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 9.1 

Slide 9.1.1 
In the last lecture, we introduced symbols into our language. 
And we showed how to intermix them with numbers to create 
mixed expressions. We saw how to use that idea to create a 
symbolic differentiation program that could reason about 
algebraic expressions, rather than just numeric expressions. In 
this lecture, we are going to take the idea of symbols, and 
combine them with lots of different data structures, to create 
tagged data structures. 
Why do we need a tag? .. and what is a tag? We'll answer these 
questions by considering an example. Suppose I want to build a 
system to manipulate complex numbers. Remember that a 
complex number is a number with two parts, standardly 
represented as a real and an imaginary part. Think of these as two axes in a vector space, or as a point in the plane 
(though we will see that there are special rules for how to manipulate such points that are different from normal 
vectors). 
Because we can represent a complex number as a vector, we can also think about representing such numbers in 
terms of a magnitude (or length) and an angle (typically with respect to the real axis). 

Slide 9.1.2 
Now, let's assume we have some data abstractions for complex 
numbers. We have a constructor, and appropriate selectors, 
including selectors for both the real and imaginary part, and for 
the magnitude and angle. 
As we saw earlier, given such constructors and selectors, we can 
proceed to write code to manipulate complex numbers, without 
worrying about internal details. So let's do that ... 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.1.3 
When manipulating complex numbers, I can take advantage of 
the fact that some things are easy to do in Cartesian (or real and 
imaginary) coordinates, and some things are easy to do in polar 
(or magnitude and angle) coordinates. For example, adding two 
complex numbers is most easily conceptualized in Cartesian 
coordinates, while multiplying two complex numbers is most 
easily conceptualized in polar coordinates. Addition is in fact 
just vector addition, so I use the selectors to get the parts of each 
complex number, add them together using standard addition, 
then glue the two parts together to make a new complex number. 
Here I will need to use a constructor that is making a complex 
number given Cartesian coordinates as input. For multiplication, 
I will use the polar selectors to get out the parts, so that I can just use normal multiplication on the magnitudes, and 
normal addition on the angles to get the new components. Here, I will use a constructor to make a new complex 
number that knows its inputs are provided in polar coordinates. 
Note once more how we are separating the use of a data abstraction from its implementation. I can write code that 
uses complex numbers, while assuming that someone else will eventually provide a specific implementation. And 
note the standard form of such procedures: we use selectors to get out the parts, apply more primitive operations to 
those parts, then reglue the parts back into a data abstraction. 

Slide 9.1.4 
While it is convenient to separate data abstraction 
implementation from data abstraction use, ultimately we will 
have to provide a detailed implementation, that is, we will need 
to build the "guts" of this abstraction. 
Suppose we ask our friend Bert to provide an implementation 
for complex numbers... 

Slide 9.1.5 
First, Bert will need a way of gluing things together. He decides, 
rather naturally, just to use lists to glue pieces together. He still 
has a choice, though, and being a rather "square " guy, Bert 
simply opts to use rectangular coordinates as his basis. That 
means that Bert's representation of a complex number is as a list 
of a real and imaginary part. 
Note what this means. If we hand Bert a real and imaginary part 
for a new complex number, he can simply glue them together 
using list as this directly meets his representation. On the 

other hand, if we hand Bert a magnitude and angle, he will need 
to convert these to real and imaginary equivalents (using the 
appropriate trigonometry) so that he can then make a list of the real and imaginary part, which is how he represents 
these numbers. Thus, Bert's internal representation is always as a list of real and imaginary parts. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.1.6 
To complete the representation, Bert just has to ensure that he 

implements selectors that together with the constructors meet 

the contract for complex number abstractions. For real and 


imag parts, this is easy, as we can just rely on the contract for 


lists. For mag and angle, however, we must get out the real 


and imaginary parts (since these are the underlying 

representational pieces) using the appropriate selectors, then 

compute the appropriate values from those parts. 

This then completes Bert's implementation. 


Slide 9.1.7 
Notice that Bert made a design choice. He made a decision to 
represent complex numbers by a list of their real and imaginary 
parts. Let's suppose at the same time we also asked Bert's friend, 
Ernie, to create an implementation of complex numbers. Since 
Ernie is Canadian, he likes cold weather, and thus decides to 
implement complex numbers in polar form. Thus, his basic 
representation is a list of magnitude and angle, which means his 
constructor for polar form is just a list, but if he is given a real 
and imaginary part, he will first have to convert them to polar 
form, then store those values as a list. 

Slide 9.1.8 
Completing Ernie's task is similar to Bert's. For the magnitude 
and angle selectors, we can just use the underlying list selectors 
to complete the contract. For selectors for Cartesian coordinates, 
we will need to select out the underlying parts, convert using 
some trigonometry to the appropriate values, and then return 
those values. 
Notice that Ernie's implementation for complex numbers thus 
also meets the contract for such objects. All that has changed 
with respect to Bert's implementation is the choice of how to 
glue basic components together. 

Slide 9.1.9 
So far this sounds fine. We have two different implementations 
of complex numbers, one in Cartesian coordinates and one in 
polar coordinates, but both seem to satisfy the contract for the 
data abstraction. What's the big deal? 
Well, suppose we find a complex number lying on the floor, 
such as the one shown... 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.1.10 
.. then here is the key question. What actual number does this 
object represent? This may sound odd, as after all, it is just a 
complex number. But suppose this is a complex number made 
by Bert. Then what number would this represent? 

Slide 9.1.11 
In that case, we know that the first part of this list represents the 
real part of the number, and the second part of the list represents 
the imaginary part. Thus, in this case, this number would 
correspond to the vector or point shown on the diagram. 

Slide 9.1.12 
On the other hand, if this were a complex number made by 
Ernie, we know that the first part of the list is the magnitude and 
the second part of the list is the angle of the vector. In that case, 
this number represents the red vector or point shown on the 
diagram. 
Thus, we have a problem. Depending on who made the complex 
number we found, we get a different answer to the question of 
what number this is. So how do we tell who made it? That is 
exactly the problem we are raising. Given what we have shown 
so far, we can't tell. Fortunately the solution is easy. Let's create 
"designer" complex numbers, let's have the designer of each 

kind of complex number sign his work on the back. That means 
we will have each creator of complex numbers but a label on the object that either says this is a "Bert" or Cartesian 
number, or this is an "Ernie" or polar number. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.1.13 
How do we add a label to our complex numbers? Let's just glue 
it onto the front. We can change our constructor to have the 
following behavior. Given two parts, we will just glue them 
together into a list. But if the parts represent real and imaginary 
components, we will put a symbolic label at the front to tell us 
this, while if the parts are magnitude and angle, we will still just 
glue them together but we'll put a different label at the front to 
tell us this. 
What else do I need? I'll want a selector to pull the labels off of 
these new abstractions, as well as a selector to get out the actual 
contents of the abstraction. Notice the use of cdr in this case 

to get the remaining list of elements from the representation. 

Note that in this case we are not doing any work to convert representations. We just glue the parts together, and put 

a label on it so we know what those parts mean. 


Slide 9.1.14 
To make sure my contract holds, I'll need to adjust my selectors. 
Here is where I am going to bury the work I just saved in 
constructing numbers. I will have a single selector real that 

works with numbers represented in either form. This selector 
will first rip the tag off of the number to see who made it. Notice 
how we use eq? to test equality of symbols, and how we use 

the selector tag to get out the tag, and how we use the quoted 

symbols to represent the things to check against the tag. 

If this is in fact a Cartesian number, we use contents to 


get everything but the tag, then can use car to get the real part, 


since that is where it is stored in this representation, just as Bert did it. 

If this is a polar number, then we have to do the work to convert the underlying representation from polar form to 

the real part. In this case, contents will get the actual representation, and the car of that list we know is the 


magnitude of the vector. Similarly the cadr gets us the angle, and we can then do the trigonometry to convert to 


the real part. 

Thus in this case, my constructor just glues pieces together, with an appropriate label. My selectors use the label to 

tell me how to interpret the pieces, and thus what additional work I may have to do to convert those pieces to the 

desired value. 


Slide 9.1.15 
Note the key point here. It's not that I am dealing with complex 
numbers, they simply provide the motivation. The key point is 
that now I can use any of the procedures I wrote to manipulate 
complex numbers on any kind of complex number. Thus, 
independent of whether a complex number is actually glued 
together in Cartesian or polar form, the same procedure applies. 
To make this happen, I use tags (or types) to tell the selectors 
which pieces to pull out, and what to do to convert the pieces to 
the right form. And these tags are exactly what support the idea 
of having different versions of the same abstraction be handled 
by the same procedures. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.1.16 
This simple example thus motivates the key idea we are going to 
explore in this lecture: by putting tags on data structures, we can 
identify the right operations to apply to that data structure. In 
fact, a careful programmer would always put tags on data 
structures, exactly to provide the flexibility to extend his or her 
system, and to provide a means verifying that correct operations 
are being applied to data. 
Thus, tagged data now refers to the concept of attaching an 
identifying label to all non-trivial data types in my system. By 
convention, we will try to always check the label on the data 
structure before applying any procedures to manipulate those 

structures. 

Slide 9.1.17 
As we will see, there are two key reasons for wanting to use 
tagged data. The first is that it makes available to use the 
powerful idea of data directed programming. Here, the idea is 
to let the type of an object direct the procedure to the right 
method to apply to that type of object. This means that our style 
will be to write procedures that look at the type of the argument, 
and use that information to apply a procedure specifically tuned 
to that type of object. This, in fact, is exactly what we just did 
with complex numbers. In that case, the selectors used the data 
type to direct the system to the right method. 
As another example, suppose you are writing a graphics 
program, and want to be able to compute the area of a figure. 
Rather than writing one giant procedure to do this for all types of figures, we could let the type of the figure (a 
triangle, a square, some other form) direct the procedure to a subprocedure specifically designed for that type of 
figure. Such an approach leads to very modular code, which is much easier to modify and maintain. 

Slide 9.1.18 
The second key reason is that this approach allows us to practice 
defensive programming. We want to be careful to ensure that 
we don't have unwarranted assumptions about inputs to our 
procedures, and in particular, we want our procedures to fail 
gracefully when they unexpected receive inputs of the wrong 
type. As we saw in the previous example, when we created a 
selector for a complex number, we did exactly that. I checked 
for specific types of objects, specifying the method to use, but if 
I did not recognize the type of the object as something I was set 
to handle, I returned an error message with appropriate 
information. The point is that by handling unknown types here, 

rather than assuming something about a data object, we catch errors before they can propagate. It is much harder to 
debug code if the error doesn't show up until several stages of additional processing have been applied to that 
incorrect data type. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.1.19 
To summarize, we have introduced the idea of tagged data 
types, and used that to consider clean ways to modularize 
systems. We now want to explore in more detail how using 
tagged data makes it easier to build large systems. 

6.001 Notes: Section 9.2 

Slide 9.2.1 
To show how to use these two ideas: data directed programming 
and defensive programming, the rest of this lecture is going to 
consider an extended example. Because this example involves a 
fair amount of code, it is important to keep in mind the key 
points being illustrated, so you don't lose sight of them amidst 
all the code fragments. To make this easier, we are going to 
incremental build new versions of the example on top of simpler 
versions, thus highlight key ideas and changes. 
The example we are going to use to illustrate the ideas of data 
directed programming and defensive programming is a system 
to manipulate arithmetic expressions. This will be similar to 
our example of symbolic derivatives, but now applying to more 
general expressions. So what does this mean? Not only do I want to be able to create symbolic arithmetic 
expressions, using appropriate constructors, I also want to be able to reduce those expressions to simpler forms, 
whenever possible. Thus, I would like to create symbolic expressions, such as exp1, as shown. Thus the value of 

the exp1 will be the actual expression. And, I want to create a system that can evaluate expressions such as 

exp1, that is, reduce this expression to a simpler form, in this case, the simpler expression 38. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.2.2 
Building a system to evaluate expressions such as those just 
shown would be interesting in its own right, but I would like to 
add more to my system. In particular, I want my system to not 
only simplify standard arithmetic expressions, but also 
expressions that involve numbers that are only known to lie 
within a particular range. For example, I want my system to be 
able to simplify expressions where the numbers are only known 
to lie between specific bounds of uncertainty. In the example 
shown, I may only know that one number lies between 3 and 7, 
and another number lies between 1 and 3, but I still want my 
system to be able to simplify an addition involving these 
numbers, whose result I know must lie between 4 and 10. 

Moreover, I would like my system to be able to deal with expressions involving data from scientific experiments, in 
which I know the ostensible value of a number and a specified range of precision, that is, that the true value may lie 
within some plus/minus range of the ostensible value. In the example shown, I want my system to be able to add 
together expressions where I know one number is 100 plus/minus 1 and the other number is 3 plus/minus 0.5, and 
have the system deduce that the sum should be 103 plus/minus 1.5. 
Thus, my goal is to build an arithmetic evaluation system that reduces arithmetic expressions, consisting of a mix of 
symbols and numbers, to simplest form; where the expressions may be standard numbers, ranges of values or 
limited precision values. 

Slide 9.2.3 
The basic approach we are going to take is to start with easy 
things first, an obvious thing to do! In our case, we will first 
build a system to handle normal numbers, and then we will look 
at how to build on top of that to handle other expressions, like 
ranges and limited precision values. 
This does sound obvious, but it is important to stress that this is 
an important characteristic of a well-designed software 
engineering project, (and one that all too often is not followed, 
even in commercial systems). It is almost always easier to 
extend a base system, than to try to do the whole thing at once. 
This is an important lesson to learn, and one that hopefully you 
will see in this extended example. 

Slide 9.2.4 
One of the things to watch for as we go through this exercise is 
to notice how, by doing the development in stages, we make 
extensions to the system much easier to conceptualize. Indeed, 
our goal is to build our simple evaluator so that extensions are 
both easy and safe. 
So what does that mean? To allow for easy extensions, we will 
need to utilize tools from data-directed programming. That is, if 
we use data-directed programming tools (e.g. tagged data, 
dispatch to methods based on tag types), we will see it is easy to 
add new types of expressions to our system (create a new 
structure, an appropriate tag, and a dispatch to a method to 

handle that new type). 
To allow for safe extensions, we will need to use methods from defensive programming. This will require explicit 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

tests for types, error checks to catch unexpected types of arguments, and disciplined use of tags to tell use how to 

handle expressions rather than assuming an expression is of a particular type. 

Thus, as we go through this exercise, watch how both of these themes guide the development of the system. 


Slide 9.2.5 
Here is our plan to accomplish this. We will first build an 
evaluator to simplify expressions involving normal numbers. 
Our second version will extend this base version in an obvious 
manner. We will see that this obvious extension is actually 
flawed, and we will use the insights from its failure to create a 
correct extension, using a series of versions of the evaluator. 
This will be a cycle in which we extend the system, observe its 
behavior, and use the observation to guide the next extension. 
Thus this series of extensions will highlight how data-directed 
programming and defensive programming intertwine to guide 
the development of a complex system. 

Slide 9.2.6 
Let's start with our simple "sum" expressions. First we build a 
constructor, as shown. Notice the type of this constructor. It 
takes in any two expressions, and returns a SumExp, 

something of a more particular type, which is identified by the 
symbol + at the front of the expression. This symbol serves as 

the tag for the expression, and we are taking advantage of the 
fact that the operator itself identifies the type of expression. 
Thus this constructor creates a tagged data type of particular 
type "sum", by gluing together the subordinate expressions with 
the tag. 

Slide 9.2.7 
Associated with this object type will be a predicate to detect 
instances of such objects. Sum-exp? takes in an expression 

of any type, and returns a Boolean value, that value indicating 
whether the input expression is a sum. Check out the body of 
this procedure. We first check to see that the expression is a pair 
(not that and evaluates its arguments in a left to right order, 

and stops as soon as one of its arguments returns a false 
value). If it is not, we stop, and return false. If it is a pair, 

then we can safely take the car of it, and check for the symbol 

+. Note that this is an instance of defensive programming. 

Also note how we are using the tag to identify the type of object. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.2.8 
And of course we will need selectors for the data objects. The 
type definitions for these procedures are that they convert 
SumExp's to Exp's.Note that we can assume that 

the selectors are givenSumExp's as input, that is, we have 

used defensive programming to check the type of the object, 
before applying the selector. This means that we can safely 
usecadr and caddr rather than first checking that the 

argument is a list, since the procedure already knows it is getting 
aSumExp as input 

Slide 9.2.9 
The last thing to keep in mind is that here we are just dealing 
with sums, so the type of expression returned by the selectors 
will just be "sums". But obviously, as we add other kinds of 
expressions to our system, we will need to the tags to help use 
direct the system to the correct subprocedure. 

Slide 9.2.10 
Given this starting point, it is straightforward to implement an 
evaluator for reducing "sums" of numbers and variables. First, 
notice the type of this procedure. It takes as input either a 

number or a SumExp, which we know is a list of three 

things, the first of which is the tag +, the other two of which are 
themselves numbers or sums. Our desired output of this 
procedure is a number, that is, we want it to reduce the input 
expression to a simple form. 
So how do we do this? Well, if the expression is just a number, 
there is nothing to do, as it is already in simple form. Notice 
what this is doing. We are using a data-directed style to check 

expression types, looking for the base or primitive types first. In this case, we use the built-in Scheme predicate for 
numbers to decide if the expression is already in simple form. 
If it is not a number, we then use defensive programming to check if the expression is a sum. If it is a sum 
expression, then we use the selectors to get out the pieces, and recursively apply the evaluator to those expressions 
to reduce them to simplest form. Note that we are safe in applying the selectors here, since the defensive 
programming style has ensured that the expression is a sum. 
This recursive application of the evaluator will allow us to deal with expressions whose subexpressions are 
themselves sums, and so on. If we have built eval-1 correctly, then we are guaranteed that once these 

subexpressions have been processed, no matter how deep a nesting of expressions they contain, the result will be a 
number. Thus we can then add the results of evaluating to the parts of the sum, and return a number as the final 
value. 
Finally, notice the defensive programming. If the argument is not a type that we know how to handle, we exit with 
an error. We don't just assume that if the expression is not a number, it must be a sum, we check explicitly. This 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

way, if some other part of the system contains a bug, we will be able to spot it and isolate the bug, rather than 
propagating that error further down the processing chain. 
Also notice the form of the procedure. We have a base case that deals with primitive expressions, and we have a 
recursive case. In the latter, we pull out the pieces using selectors, reduce the problem to a simpler version of the 
same problem, then combine the results using simple operations. 

Slide 9.2.11 
If we apply this procedure to a sum that includes as 
subexpressions both numbers and sums, it correctly unwinds the 
evaluation. You should be able to trace this by applying the 
substitution model. 
Given this system, let's see what happens as we try to extend it 
to handle other kinds of expressions. 

Slide 9.2.12 
So, let's try the obvious extension. Let's add ranges to our 
system. This means we will need a data abstraction for ranges, 
and to do it the "dumb" way, we'll do this without using explicit 
tags. Thus, the obvious way to represent a range is to simply 
glue together the min and max values of the range, in a list. 

Slide 9.2.13 
Given that choice for a representation, the implementation of the 
selectors is easy. We simply take one of these ranges, 
represented as a list, and pull out the right piece. This simply 
uses the abstraction contract for lists to create selectors that meet 
the desired contract for ranges. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.2.14 
Then building a procedure to add ranges is just a matter of using 
the selectors to pull out the min and max values of the two input 
ranges, then using normal addition to create the new min and 
max of the sum, and finally using the constructor to glue those 
new extreme values together into the new range. 
Note what we do here. We know the inputs are ranges; hence we 
can safely apply the selectors. By their type definitions, we 
know that they return normal numbers, so we are safe in 
applying + to them. Then given two numbers for the new min 
and max, we can use the constructor to create a new range, since 
the input types match it's type definition. Thus, we meet the 

contract for the type definition of range-add-2. 

Slide 9.2.15 
Using this representation for ranges, we can now build our 
second version of an evaluator, one that is intended to deal with 
numbers and ranges. Notice our desired type definition for this 
procedure. The input argument should be a number, a range or a 
sum expression, and it should return either a number or a range, 
since those are our two primitive forms of expressions. 

Slide 9.2.16 
Here is the desired procedure. Look at the structure of this 
second evaluator. Note the form. As before, it first checks to see 
if the expression is a number, in which case, we are done, and 
can just return the number. 
If it is a sum expression, we will first recursively simplify 

the two subexpressions. Then, we will try to be clever. We'll 
check to see if both values are numbers, in which case we will 
just add them together the normal way. Otherwise we will add 
the two values together using a procedure designed to add 
ranges. 
Finally, we will check to see if the expression is a pair. Since we 

already know it is not a sum expression, if it is a pair, then it must be one of our ranges, and we will just return the 
range. 
This looks okay, right? ... well, let's check it out ... 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.2.17 
... as you have probably already guessed, this in fact is "not 
right". Here are some ways in which this system does not 
behave correctly. Consider the first example. If I try to evaluate 
a sum made up of a number and a range, I get into trouble 
because in fact I haven't allowed for all possible cases in my 
procedure. In particular, why does this fail? Well, the evaluator 
will try to simplify this sum, and in doing so will first check to 
see if the two parts are numbers. They are not, so it assumes that 
both expressions are ranges, and tries to add them together as 
ranges. This finally breaks down when we try to take the car of 
the first expression. 
So why is the system failing in this way? Largely this is because 
our code is making assumptions about how data structures are represented. In particular, we are missing a case in 
which we have a sum of a number and a range, which we need to deal with. 

Slide 9.2.18 
Here is the second problem. We weren't really defensive in our 
programming. Suppose we add a limited precision data type to 
our system, as shown. Then notice that our evaluator will 
actually produce an answer, but an incorrect one. It will treat 
anything that is a pair as a range, and add the parts together as if 
they represented minimum and maximum values, rather than a 
value and an uncertainty. Of course, in a defensive approach, the 
system should have detected that this is not a data type that it 
can handle and alert us. The problem here is that we assume that 
pairs represent ranges, without putting a tag on them, and thus 
end up using the same representation for other types of objects. 

Slide 9.2.19 
Even though this is a simple example, it nicely illustrates some 
of the lessons to be learned in building complex systems. 
The first is what we just observed. A common bug arises in 
calling a function on the wrong type of data, either because we 
made a coding error, because our reasoning was flawed or 
overlooked a possibility, or because we change one piece of 
code and forget to change the corresponding pieces elsewhere in 
the system. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.2.20 
The result is that the system produces useless values. It is 
particularly a problem when it does not hit an error, but returns a 
value that it believes (incorrectly) to be correct. As we saw, the 
system can sometimes produce an answer that looks like a legal 
response, but is not. In this case the system may not fail until 
much later in the process (or may even return the answer as a 
final result), where it is much harder to track down the cause of 
the failure (or possible to miss it altogether). 
In this case, our underlying problem is that we are only loosely 
using the data types to represent our objects. We really need to 
be disciplined in tagging all our data types, and not relying on 
underlying representations to be uniquely associated with data 

types. 

6.001 Notes: Section 9.3 

Slide 9.3.1 
So let's go back and look at our sum expressions, with this idea 
of using tags. In fact, our sum expressions are already tagged. 
The first subexpression identifies the type, so let's pull this out 
explicitly and give it a name. Thus we will restructure our data 
abstraction to isolate the tag and its use. We will create an 
explicit label, and use it everywhere that we previously used the 
implicit label of +. It may seem a bit silly that we are just using 

+ as the label, but giving it another name, but the advantage is 

that now if we decide to change to another label, we need only 
change the definition for sum-tag which is just one change 

in the code, rather than finding all the places where we rely on 
that tag and changing them. In other words, we isolate the use of the tag from its actual value. 

The key point is that now the predicate for testing if an expression is a "sum" is not unambiguous. We check for 

equality of the tag with the value of the special symbol sum-tag. So long as no other constructor uses + as a 


tag, only things constructed with make-sum will pass the predicate sum-exp?. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.3.2 
Given that we are being more disciplined about our use of tags, 
we need to go back and label our primitive expressions as well. 
As in the previous case, we will create a tag to identify 
constants, and give it a unique name. By using this name, we 
isolate the actual value of the tag from the use of the tag, which 
again means that if we decide to change the specific tag, we can 
do so with one change of code, rather than having to find all the 
myriad places where we use the tag. 
What else do we need? Now, we need an explicit constructor for 
constants. In the earlier version, we just used numbers directly. 
Here, we explicitly construct a tagged abstract data type, by 
gluing the label onto the front of the actual number. 

Of course, we can now define a predicate for testing whether an expression is a constant. Notice the 

defensive programming, in which I first check that the expression is a pair, before trying to get out a piece of a cons 
pair. The actual check is whether the tag of the expression is eq? to the value of the name constant-tag. 

Since I now have a tagged object, I will also need a selector to get the actual value of the constant. 
Thus, this data abstraction is very similar to our earlier ones. We have a tag at the front, we have a constructor for 
explicitly making instances of the object, we have a careful check for the type of expression, and a selector that 
relies on the predicate having already verified the correct type so that it can directly pull out the right piece of the 
structure. 

Slide 9.3.3 
Given this, we can now restructure our evaluator, so here is the 
third version. 
First, notice the new type. Here we explicitly acknowledge that 
the input expression is either a constant expression or a sum 
expression, and that the result is a number. 
Notice how the evaluator is structured. In this case, it explicitly 
checks the tag on the expression for the type. Thus, it doesn't 
rely on underlying scheme types (e.g. number?) to identify 

types, it looks for an explicit tag. 
This leads to a very nice overall structure, with a case for each 
kind of object in the system, and a failsafe case to be defensive 
in our programming. Thus, if the system gets something other than an expression constructed by one of our 
constructors, it will tell us immediately, rather than assuming that there is a default type of expression, as we did in 
the previous case. 
If the expression is a constant, we can just return the number associated with that data type. 
If the expression is a sum, we get out the pieces, evaluate them, then add those two numbers together to return a 
single number as the result. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.3.4 
This looks nice, right? In fact, it does seem to have the right 
form. But we have still made a careless assumption. 
If we construct a sum of two constants (3 and 5) and evaluate it, 
we get out the number 8. This meets our type definition, but 
think about what happens if we were to use this expression 
inside a larger sum. In that case, we would end up trying to 
evaluate a sum with an untagged object (this value) to a tagged 
object, and we would hit an error. So we are closer, but we still 
are not there. 

Slide 9.3.5 
Fortunately, the fix is easy. We need to change the type 
characteristics to return a tagged object, that is, a constant 
rather than a number. Or, if you prefer, we need to ensure that 
we put the tag on the number before returning, because this 
might only be a subpart of some other expression, and the inputs 
to the evaluator assume tagged expressions. 
Thus, our new and improved evaluator treats constants the same 
as before, except that now we return the fully tagged expression, 
not the value. Thus, we meet the new type characteristics, by 
returning a tagged expression. 

Slide 9.3.6 
For sums, notice what we do. As before, we use the selectors to 
pull out the subexpressions. We then recursively apply eval 
to them, to get the reduced value. By our new type contract, this 
will return two tagged constants, so we need to extract out the 
values of each, add them using normal addition, then meet the 
type contract by attaching a tag to the result. 
This looks like more work to code, but the result is a much 
cleaner implementation. Notice how in both cases we are now 
guaranteed to get a constant expression as the result, not a 
number. 

Slide 9.3.7 
And now when we try this, we get back a labeled object, in this 
case the constant, 8, not the number, 8. This satisfies our new 
type contract, and means that if this were a subexpression in a 
larger expression, the returned value would be something that 
we could then use for further reduction, since the type tag would 
direct this to the right method. 
Notice how this version of the evaluator has the property that 
every case in the dispatch procedure assumes the input is some 
tagged structure, and does not make an implicit assumption 
about types of objects. Further, each case returns a tagged object 
as a value. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.3.8 
In principle, this is a good thing to do. But it is not as clean a 
piece of code, as we would like. 
Notice that we have actually intertwined operations on data 
types inside our procedure. Let's fix that. Let's pull that 
operation outside to be a part of the data abstraction, thus 
allowing our evaluation mechanism to be much cleaner, just 
focusing on operations on abstractions, rather than directly 
manipulating them. 
Thus, we have our procedure for adding constants use the 
selectors to get out the parts, do the addition, and then remake a 
tagged data structure. This is much better, as now the procedure 
for evaluation only involves procedures that manipulate abstract 

objects, and all work inside the abstraction is isolated inside separate procedures. 

Slide 9.3.9 
Now our evaluator has a consistent form. It uses predicates to 
check types of expressions. Other than the failsafe case, it 
dispatches to a method designed to handle each kind of 
expression. There are no data construction or data manipulation 
procedures exposed within the evaluator, other than the selectors 
to get out parts of an expression. All that work has been isolated 
within procedures designed for each expression type. 

Slide 9.3.10 
If we step back from the example, we can extract a set of 
messages that apply much more generally. Our standard pattern 
for manipulating abstract data types is detailed at the top of the 
slide. This pattern is something we will want to use frequently 
as we build other, more complex, systems. 
Notice the discipline associated with this pattern. We must use 
tagged data everywhere within our system, including all 
returned values. 
While this example may seem simple (and perhaps boring) you 
should examine it carefully to be sure you are comfortable with 
the inherent ideas. You will be using this approach often as you 
build your own systems, and this discipline supports safe and 

efficient programming. 

6.001 Notes: Section 9.4 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.4.1 
Having learned how better to structure a tagged data system, we 

can go back to where we started. Remember that our goal was to 

build a system to handle sums of numbers, ranges and limited 

precision values. And our plan was to build a correct system for 

the simpler expressions, then extend it to handle a broader range 

of expressions. 

Having built a correct system for constants and sums of 

constants, we need to extend this to handle ranges. And to do 

this, we just apply the same ideas. This means create a variable 

name to hold the tag information (in this case range-tag). 


This isolates the value of the tag from the use of the tag. 

Our constructor, our predicate and our selectors look just like 

the previous system, with a tag attached in the right place. 

All of this just mimics the structures we built for our last evaluator, but now applied to ranges. 


Slide 9.4.2 
Having added a range data structure, we can turn to 
incorporating such data types into our evaluator. First, what do 
we want in terms of behavior of the evaluator? 
The argument to this procedure will now be a constant, a range 
or a sum, all of which will be appropriately labeled by a tag. We 
want the evaluator to produce either a constant, if the expression 
only involves constants, or a range, if the expression involves 
some combination of ranges and constants, or just ranges. Note 
that this implies a hierarchy of types, in which constants are 
subsumed by ranges. 
Thus, if the expression is just a constant or a range, we are done, 
and we should simply return the tagged expression. Notice the 

two clauses to handle these primitive cases, both using data directed dispatch. 

Slide 9.4.3 
What about sums? In this case, we have to deal with the 
possibility that the parts of the sum could themselves be either 
constants, sums or ranges. Thus, we will first select out the parts 
of the sum, and evaluate those subexpressions. Depending on 
the types of values returned for each part, we can complete the 
simplification. 
If both subexpressions evaluate to a constant, we can use a 
procedure that adds constants (which will select out the values, 
do normal addition, then glue a tag on the front and return an 
appropriate abstract data representation). Notice how this nicely 
separates out the data manipulation from the operation. All the 
actual manipulation of the data structures is isolated within 
constant-add. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.4.4 
If the two parts are not both constants, then we need to return a 
range, since at least one of the values is a range. Here we need to 
be careful. In order to add two ranges, we need to insure that the 
inputs are ranges (that is what range-add requires in its 

type definition). Thus we will use another procedure that 
converts values to ranges to ensure that what is passed in to 
range-add is of the correct form. Of course, if a range is 

passed in to val2range we should just return that range. 

Slide 9.4.5 
As we did earlier, we can pull this piece outside of procedure 
and into the abstraction, thus simplifying the code. In this case, 
we create a predicate that tests whether the expression is one of 
our primitives. Note that this creates an implicit higher-level 
data abstraction, which absorbs two more primitive data 
abstractions into a common type. 

Slide 9.4.6 
... and for this higher order kind of data abstraction, we will 
create a procedure to add such data types together, by 
considering exactly the set of cases we did earlier. 

Slide 9.4.7 
.. and here is why we want to do this. Now we have a nice, crisp, 
clean version of the evaluator. Notice the new type definition 
here, which uses our new data abstraction. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.4.8 
Notice what the evaluator actually does. There is a simple 
dispatch, one for a value expression, one for a sum expression. 
These dispatches are again based on using the tags on the 
expressions. For value expressions, we just return the 
expression, as there is nothing more to simplify. 
For a sum expression, we use the same pattern as before. We 
select out the subpieces, recursively evaluate them to get simpler 
forms, then recombine the results into an abstract data type. 
Notice the nice structure of this code. We have a base case for 
the primitive expressions. We have a recursive case, in which 
we reduce the problem to simpler versions of the same problem, 
plus a simple method for combining the results. 

Perhaps most importantly, compare this to our first evaluator. It has exactly the same simple structure, but because 
of the disciplined way in which we have used data types and abstractions, we can handle a much bigger range of 
expressions. 
What makes this possible is the separation of tag use from tag value, the use of tags to direct the processing, and 
defensive programming to handle unexpected types. Also notice how we have used the type definitions of the 
various procedures to help us reason about what each procedure should do. 

Slide 9.4.9 
To add in the limited precision values we will use exactly the 
same approach. Since we are adding a new simple type of 
expression, we will add a new base case to our evaluator to 
handle this type. In principle, we might think that this is enough, 
but what happens if the two pieces of a sum are now combined? 

Slide 9.4.10 
As you have probably already deduced, we have to be careful 
here. In particular, we need to exercise defensive programming. 
To see this, consider the example shown in which I make a sum 
of a range expression and a limited precision expression. If I 
evaluate this, that is, if I reduce it to simpler terms, I get back a 
range from 14 to 16. But that is incorrect! 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.4.11 
The right answer should either be the range from 13 to 17 or the 
limited precision value of 15 plus/minus 2. Instead, we got this 
hybrid mix. Why? 

Slide 9.4.12 
.. because we were fully defensive in our programming. We 
didn't explicitly check for all types back in value-add. We 

assumed that if something wasn't a constant, then it must be a 
range, and that didn't leave any room for a new data type. So 
how do we fix that? 
To say this in more detail, here is what went wrong. A limited 
precision expression is not a constant, so inside the code we 
drop down to the else clause. This passes the expression on to 
the conversion procedure, but it just strips off the tag without 
checking it. It thus applies a selector to an incorrect data type, 
accidentally converting this expression to a range with no 

uncertainty. And this causes an incorrect range to be added up. 
So we need to be fully defensive in all of our procedures! 

Slide 9.4.13 
Thus, we should really check all tags before operating on the 
expressions. And here is associated change to value-add. 

The main change is to explicitly check if both values are either 
constants (where we know what to do) or are values. In the latter 
case we are safe in converting the values to ranges, and adding 
appropriately. Otherwise, we should complain that we don't 
know how to combine the two expression types. 
Note the general message here. When checking types, we should 
reserve the failsafe branch only for dealing with errors or 
unexpected cases. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 9.4.14 
And here are the messages you should take away from this 
exercise. 
As a summary, notice that many programmers don't follow these 
rules. They often omit type checks for efficiency reasons, and 
assume that the types will be checked at a higher level in the 
code. This can easily lead to bugs, and indeed, we would have 
trapped our bug much earlier, if we had been careful to check 
types. In short, though it may cost you a little in execution 
speed, being paranoid is often a great way to efficiently write 
code that is much less likely to succumb to bugs. 
As the founder of Intel notes: "only the paranoid survive"! 


	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved


