
MIT OpenCourseWare
http://ocw.mit.edu

6.00 Introduction to Computer Science and Programming
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

1) Is each of the following True or False

1.1. A greedy algorithm can be used to solve the 0-1 knapsack optimization
problem.

1.2. Dynamic programming can be used to solve optimization problems where the
size of the space of possible solutions is exponentially large.

1.3. Dynamic programming can be used to find an approximate solution to an
optimization problem, but cannot be used to find a solution that is guaranteed to
be optimal.

1.4. In Python, an instance of a class is an object, but a class itself is not.

1.5. In Python, a subclass can override a function definition contained in a super
class.

1.6. Decision trees are always binary.

2) Provide code implementing a Python function that meets the specification below.

def findMedian(L):

"""Finds median of L.

L: a non-empty list of floats

Returns:

 If L has an odd number of elements, returns the median

element of L. For example, if L is the list

[15.0, 5.3, 18.2], returns 15.0.

 If L has an even number of elements, returns the average

 of the two median elements. For example, if L is the

list [1.0, 2.0, 3.0, 4.0], returns 2.5.

 If the list is empty, raises a ValueError exception.

Side effects: none.

"""

3) What does the following code print?

class Shape(object):

 def __cmp__(s1, s2):

return cmp(s1.area(), s2.area())

class Square(Shape):

def __init__(self, h):

self.side = float(h)

def area(self):

return self.side**2

 def __str__(self):

 return 'Square with side ' + str(self.side)

class Circle(Shape):

def __init__(self, radius):

self.radius = radius

 def area(self):

return 3.14159*(self.radius**2)

def __str__(self):

return 'Circle with radius ' + str(self.radius)

def f(L):

 if len(L) == 0: return None

x = L[0]

for s in L:

 if s >= x:

 x = s

 return x

s = Square(4)

print s.area()

L = []

shapes = {0:Circle, 1: Square}

for i in range(10):

L.append(shapes[i%2](i))

print L[4]

print f(L)

4) The following two formulas can be used to formalize a 0-1 knapsack problem.

1) 2)

4.1) What do each of n, pi, xi, wi, and C represent?

4.2) Use the formulas (refer to them as “formula 1” and “formula 2”) to describe the
optimization problem to be solved.

5. Write pseudo code describing merge sort.

6) Consider the two functions specified below that are used to play a “guess a number game.”

def cmpGuess(guess):
"""Assumes that guess is an integer in range(maxVal). returns -1 if guess is < than the magic

number, 0 if it is equal to the magic number and 1 if it is greater than the magic number."""

def findNumber(maxVal):
"""Assumes that maxVal is a positive integer. Returns a number, num, such that

cmpGuess(num) == 0."""

Write a Python implementation of findNumber that guesses the magic number defined by
cmpGuess. Your program should have the lowest time complexity possible. (20 points)

