
MIT OpenCourseWare 
http://ocw.mit.edu 

6.00 Introduction to Computer Science and Programming 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


6.00: Introduction to Computer Science and 
Programming 

Problem Set 3 
Handed out: Tuesday, September 16, 2008.

Due: 11:59pm, Tuesday, September 23, 2008.


Introduction 

This problem set will introduce you to using functions and recursion, as well as string operations in Python. 

Collaboration 

You may work with other students. However, each student should write up and hand in his or her assignment 
separately. Be sure to indicate with whom you have worked. For further detail, please review the collaboration 
policy as stated in the syllabus. 

Submission 

This problem set, and future ones, will be graded by a test harness. The test harness program will expect your 
files to include just function definitions, with no executable code outside the function definitions (besides what's 
already in the template). So remember to comment out your testing code. (And *do* test your code 
thoroughly!). 

Strings and string searching 

As we have seen in lecture, strings are a common data type in many programming languages, and are used to 
represent textual information. You have already seen common examples of string searching.  For example, 
finding words or phrases in documents involves searching one sequence of characters (i.e., the document) to 
find instances of another sequence of characters (the word or phrase to be found).  Similarly, for Web searches 
such as Google, one needs to count instances of key words in documents, in order to rank pages. 

Matching strings: a biological perspective 

String matching is also is very valuable in less obvious settings, such as biology. A common problem in modern 
biology is to understand the structure of DNA molecules, and the role of specific structures in determining the 
function of the molecule. A DNA sequence is commonly represented as a sequence of one of four nucleotides – 
adenine (A), cytosine (C), guanine (G), or thymine (T) –and hence a DNA molecule or strand is represented by 
a string composed of elements from an alphabet of only four symbols, for example, the string 
AAACAACTTCGTAAGTATA represents a particular strand of DNA. 

One way to understand the function of a particular strand of DNA (or even a sub-strand of DNA) is to match that 
strand against a library of known DNA sequences – that is, sequences whose function and structure is known – 
with the idea that similar structure tends to imply similar function. Simple organisms such as bacteria may have 
millions of nucleotides in their DNA sequence, and the human chromosome is believed to have on the order of 
246 million bases, so any matching scheme must be very efficient in order to be useful. 

In this problem set, we won’t ask you to build a practically useful tool, but hope to give you a sense of some of 



the issues involved, by exploring some simple matching schemes. 

To get started, we are going to use some built-in Python functions. To use these functions, include the 
statement 

from string import * 

at the beginning of your file.  This will allow you to use Python string functions.  In particular, if you want to 
find the starting point of the first match of a keyword string key in a target string target you could use the
find  function. 

Try running  on some examples, such as find("atgacatgcacaagtatgcat","atgc") 

Note how it returns the index of the first instance of the key in the target. Also note that if no instance of the 
key exists in the target, e.g, find("atgacatgcacaagtatgcat","ggcc") it returns the value -1. 

We are going to explore some ideas in matching strings by looking at successively more complex tasks. NOTE: 
the solutions you are going to write will be tested on examples from DNA strings, but you should not assume 
that your solutions will only apply to DNA strings, i.e. do not assume that the strings consist of only 4 different 
characters, but rather that the strings could contain an arbitrary number of different characters. 

Let’s start with a fairly simple problem. Suppose we want to count the number of times that a key string 
appears in a target string. We are going to create two different functions to accomplish this task: one iterative, 
and one recursive.  For both functions, you can rely on Python’s find function – you should read up on its 
specifications to see how to provide optional arguments to start the search for a match at a location other than 
the beginning of the string.   For example, 

find("atgacatgcacaagtatgcat","atgc") 

returns the value 5, while 

find("atgacatgcacaagtatgcat","atgc",6) 

returns the value 15, meaning that by starting the search at index 6, the next match is found at location 15. 

For the recursive version, you will want to think about how to use your function on a smaller version of the 
same problem (e.g., on a smaller target string) and then how to combine the result of that computation to solve 
the original problem.  For example, given you can find the first instance of a key string in a target string, how 
would you combine that result with invocation of the same function on a smaller target string. You may find the 
string slicing operation useful in getting substrings of a string. 

find 



Problem 1. 

Write two functions, called countSubStringMatch  and countSubStringMatchRecursive that 
take two arguments, a key string and a target string. These functions iteratively and recursively count 
the number of instances of the key in the target string. You should complete definitions for 

def countSubStringMatch(target,key): 

and 

def countSubStringMatchRecursive (target, key): 

Place your answer in a file named ps3a.py 

For the remainder of this problem set, we are going to explore other substring matching ideas. These problems 
can be solved with either an iterative function or a recursive one.  You are welcome to use either approach, 
though you may find iterative approaches more intuitive in these cases of matching linear structures. 

The next thing we want to do is write a function that generalizes find so that it returns a tuple of all starting 
points of a match of a key string in a target string, not just the first instance. 

Problem 2. 

Write the function subStringMatchExact.This function takes two arguments: a target string, 
and a key string.  It should return a tuple of the starting points of matches of the key string in the target 
string, when indexing starts at 0.  Complete the definition for 

def subStringMatchExact(target,key): 

For example, 

subStringMatchExact("atgacatgcacaagtatgcat","atgc") 

would return the tuple (5, 15).  The file ps3_template.py includes some test strings that you can use to 
test your function.  In particular, we provide two target strings: 

target1 = 'atgacatgcacaagtatgcat'


target2 = 'atgaatgcatggatgtaaatgcag'


and four key strings: 

key10 = 'a'


key11 = 'atg'


key12 = 'atgc'


key13 = 'atgca' 

Test your function on each combination of key and target string, as well as other examples that you 



create. Place your answer in a file named ps3b.py 

The function you wrote in Problem 2 will find exact matches of a key string in a target string. It is often also 
useful to find near matches, for example, matches of a key string in a target string, where one of the elements 
of the key string is replaced by a different element.  For example, if we want to match ATGC against 
ATGACATGCACAAGTATGCAT, we know there is an exact match starting at 5 and a second one starting at 15. 
However, there is another match starting at 0, in which the element A is substituted for C in the key, that is we 
match ATGC against the target.  Similarly, the key ATTA matches this target starting at 0, if we allow a 
substitution of G for the second T in the key string. 

We can build on your function from Problem 2 to solve this problem. In particular, consider the following steps. 
First, break the key string into two parts (where one of the parts could be an empty string).  Let’s call them 
key1 and key2. For each part, use your function from Problem 2 to find the starting points of possible matches, 
that is, invoke 

starts1 = subStringMatchExact(target,key1) 

and 

starts2 = subStringMatchExact(target,key2) 

The result of these two invocations should be two tuples, each indicating the starting points of matches of the 
two parts (key1 and key2) of the key string in the target.  For example, if we consider the key ATGC, we could 
consider matching A and GC against a target, like ATGACATGCA (in which case we would get as locations of 
matches for A the tuple (0, 3, 5, 9) and as locations of matches for GC the tuple (7,).  Of course, we would want 
to search over all possible choices of substrings with a missing element: the empty string and TGC; A and GC; 
AT and C; and ATG and the empty string.  Note that we can use your solution for Problem 2 to find these 
values. 

Once we have the locations of starting points for matches of the two substrings, we need to decide which 
combinations of a match from the first substring and a match of the second substring are correct. There is an 
easy test for this. Suppose that the index for the starting point of the match of the first substring is n (which 
would be an element of starts1), and that the length of the first substring is m.  Then if k is an element of 
starts2, denoting the index of the starting point of a match of the second substring, there is a valid match 
with one substitution starting at n, if n+m+1 = k, since this means that the second substring match starts one 
element beyond the end of the first substring. 

Problem 3. 

Write a function, called which takes three arguments: a tuple 
representing starting points for the first substring, a tuple representing starting points for the second 
substring, and the length of the first substring. The function should return a tuple of all members (call 
it n) of the first tuple for which there is an element in the second tuple (call it k) such that n+m+1 = k, 
where m is the length of the first substring.  Complete the definition 

To test this function, we have provided a function called subStringMatchOneSub, which takes two 
arguments: a target string and a key string.  This function will return a tuple of all starting points of 
matches of the key to the target, such that at most one element of the key is incorrectly matched to the 
target. This function is provided for you in the file and invokes the function you are to 
write. 

ps3_template.py 

constrainedMatchPair 

def constrainedMatchPair(firstMatch,secondMatch,length): 



Save your answers in a file named ps3c.py. 

You will have noticed in your tests for Problem 3, that this approach will find matches with one substitution but 
will also find matches with no substitutions, that is, exact matches of the key to the target.  Suppose we want to 
find only those matches with exactly one substitution.  One easy way to do this is to use the functions from both 
Problem 2 and Problem 3.  These functions will give you a tuple representing starting points for exact matches, 
and matches with up to one substitution, respectively. If we keep only those elements of the second tuple that 
don’t occur in the first tuple, we will have the matches with exactly one substitution. 

Problem 4. 

Write a function, called which takes two arguments: a target 
string and a key string. This function should return a tuple of all starting points of matches of the key to 
the target, such that at exactly one element of the key is incorrectly matched to the target. Complete the 
definition 

Save your answers in a file named ps3d.py. 

subStringMatchExactlyOneSub 

def subStringMatchExactlyOneSub(target,key): 

Hand-In Function 

1. Save 

Save your code in the specific file name indicated for each problem. Do not ignore this step or save your file(s) 
with different names. 

2. Time and Collaboration Info 

At the start of each file, in a comment, write down the number of hours (roughly) you spent on the problems in 
that part, and the names of the people you collaborated with. For example:

 # Problem Set 3 (Part I)
 # Name: Jane Lee
 # Collaborators: John Doe
 # Time: 1:30
 # 
... your code goes here ... 




