
MIT AITI
Lecture 15: I/O and Parsing

Kenya 2005

1

©2005

MIT-Africa Internet
Technology Initiative

What we will learn in this Lecture.

• This Lecture is divided into 2 main parts:
I – Input /Output:
Input vs Output, and Byte vs Character Streams
Important Stream Classes and Using these Classes
Example of Reading from and Writing to Text Files
Example of Reading text from Keyboard input
Using buffered streams

II – Introduction to Parsing:
Delimiters
StringTokenizer

2

©2005

MIT-Africa Internet
Technology Initiative

I/O Basics
• I/O = Input/Output – Communication between a

computer program and external sources or
destinations of information

• Involves: - Reading input from a source
- Writing output to a destination

• Reading and Writing is specified by 4 abstract
classes:

- Reader
- Writer
- InputStream
- OutputStream

3

©2005

MIT-Africa Internet
Technology Initiative

Java I/O Streams
• Java programs communicate with the outside world

using Streams

• Streams are used for reading and writing data

• I/O Streams are unidirectional
- Input stream for data coming into program
- Output stream for data leaving program

• Examples of Sources and Destinations of info include:
Files, Network connections, other programs, etc.

4

©2005

MIT-Africa Internet
Technology Initiative

Input vs Output Streams

• An object from which we can read data is an
Input Stream

• read write

• An object to which we can write data is an
Output Stream

Input
Stream

(Source)

Info
Stream Program

Info
Stream

Output
Stream

(Destination)

5

©2005

MIT-Africa Internet
Technology Initiative

Byte vs. Character Streams
• Byte Streams are used to read and

write data which is in binary format (1's
and 0's)
e.g. images, sounds, etc.

• Character Streams are used to read
and write data which is in text format
(characters)
e.g. plain text files, web pages, user
keyboard input, etc.

6

©2005

MIT-Africa Internet
Technology Initiative

Important Stream Classes

• FileInputStream
- Read data in binary format from files
• FileOutputStream
- Write data in binary format to files
• FileReader
- Read text data from files
• FileWriter
- Write text data to files

7

©2005

MIT-Africa Internet
Technology Initiative

Using a Stream class

1. Open a stream by instantiating a
new stream object

2. While more information to read/write,
read/write that data using methods in
the Stream Classes

3. Close the stream by calling the
object’s close() method

8

©2005

MIT-Africa Internet
Technology Initiative

Java I/O Classes
• The java.io package offers classes

used to read/write data from/to files

• To read/write data, we instantiate a
subclass of one of the 4 abstract
superclasses:

input output

byte InputStream OutputStream

character Reader Writer

9

©2005

MIT-Africa Internet
Technology Initiative

Using Reader

• Recall: a Reader is used to read a
character input stream

• Reader offers methods to read single
characters and arrays of characters.
E.g.
int read()

• Reader is abstract so you must
instantiate a subclass of it to use these
methods

10

©2005

MIT-Africa Internet
Technology Initiative

Reading from a Text File
public void readFile() {

FileReader fileReader = null;
try {

fileReader = new FileReader("input.txt");
int c = fileReader.read();
while (c != -1) {

char d = ((char)c);
c = fileReader.read();

}
} catch (FileNotFoundException e) {

System.out.println("File was not found");
} catch (IOException e) {

System.out.println("Error reading from file");
}
if (fileReader != null) {

try { fileReader.close(); }
catch (IOException e) { /* ignore */ }

}
}

Step 1

Step 2

Step 3

11

©2005

MIT-Africa Internet
Technology Initiative

BufferedReader

• BufferedReader is a subclass of Reader

• Buffers the character stream from FileReader and
has readLine() method to read an entire line of
characters efficiently

• FileReader fr = new FileReader("myFile.txt");
BufferedReader br = new BufferedReader(fr);

• The readLine() method returns null when there
are no more lines to read

12

©2005

MIT-Africa Internet
Technology Initiative

Using BufferedReader
public void readFileWithBufferedReader() {

BufferedReader bufferedReader = null;
try {

FileReader fr = new FileReader("input.txt");
bufferedReader = new BufferedReader(fr);

String line = bufferedReader.readLine();
while (line != null) {

// do something with line
line = bufferedReader.readLine();

}
} catch (FileNotFoundException e) {

System.out.println("File was not found");
} catch (IOException e) {

System.out.println("Error reading from file");
}
if (bufferedReader != null) {

try { bufferedReader.close(); }
catch (IOException e) { /* ignore */ }

}
}

13

©2005

MIT-Africa Internet
Technology Initiative

POP QUIZ
- Why can we not create instances of the Reader class

directly?

- Which kind of stream would we use to read/write data
in binary format?

- Which kind of stream would we use to read/write data
in text format?

- Why do we wrap a FileReader with a
BufferedReader before reading from a Text file?

Reader is an Abstract class, and cannot be instantiated

Byte Streams

Character Streams

BufferedReader has the readLine() method used to read entire lines

14

©2005

MIT-Africa Internet
Technology Initiative

Writer

• Writer is an abstract class used to write to character
streams

• Offers write methods to write single characters,
arrays of characters, and strings (look at API)
e.g. void write(int c)

• BufferedWriter (subclass of Writer) offers
efficient writing; newLine() method to insert a blank
line and write(String n) method to write data

• Close Writer with close() method when done

15

©2005

MIT-Africa Internet
Technology Initiative

Writing to a Text File
public void writeFileWithBufferedWriter() {

BufferedWriter buffWriter = null;
try {

FileWriter fw = new FileWriter("output.txt");
buffWriter = new BufferedWriter(fw);
while (/*still stuff to write */) {

String line = // get line to write
buffWriter.write(line);
buffWriter.newLine();

}
} catch (IOException e) {

System.out.println("Error writing to file");
}
if (buffWriter != null) {

try { buffWriter.close(); }
catch(IOException e) { /* ignore */ }

}
}

16

©2005

MIT-Africa Internet
Technology Initiative

Example: Copying Text Files
void copyFiles(String inFilename, String outFilename)

throws FileNotFoundException {
BufferedReader br = null;
BufferedWriter bw = null;
try {

br = new BufferedReader(new FileReader(inFilename));
bw = new BufferedWriter(new FileWriter(outFilename));
String line = br.readLine();
while(line != null) {
bw.write(line);
bw.newLine();
line = br.readLine();

}
} catch (IOException e) {
System.out.println("Error copying files");

}

if (br != null) {try {br.close();} catch(IOException e) {}}
if (bw != null) {try {bw.close();} catch(IOException e) {}}

}

17

©2005

MIT-Africa Internet
Technology Initiative

Reading From Keyboard Input
• Keyboard input is sent over a Stream referred

to as "standard" input, but to read the data you
want it to be a Reader

• InputStream acts as a crossover class, to get
from a Stream to a Reader

• To read characters over an InputStream,
need to wrap it in an InputStreamReader

• To read line by line, wrap the
InputStreamReader with a
BufferedReader

18

©2005

MIT-Africa Internet
Technology Initiative

Example: Reading from Keyboard Input
/**
* Returns a line read from keyboard input.
* Return null if there was an error reading the line.
*/
public void String readKeyboardLine() throws IOException {

BufferedReader br = null;
String line = null;
try {

br = new BufferedReader(new InputStreamReader(System.in));
line = br.readLine();

} catch (IOException e) {}

if (br != null) {
try { br.close(); }
catch (IOException e) { /* ignore */ }

}
return line;

19

©2005

MIT-Africa Internet
Technology Initiative

Streams Conclusion

• Make sure you look at the
InputStream and OutputStream
hierarchy, and Reader and Writer
hierarchy in a Java Textbook to see
their subclasses and methods

• Use Java API!!!

20

©2005

MIT-Africa Internet
Technology Initiative

Introduction to Parsing

• Programs often encode data in text
format before it is stored in files

• Programs later need to decode the text
in the files back into the original data

• Process of decoding text back into data
is known as parsing

21

©2005

MIT-Africa Internet
Technology Initiative

Delimiters

• When data is stored in text format, delimiter
characters are used to separate tokens (or
pieces) of the data

• A list of first names stored separated by the '#'
delimiter: Greg#Kwame#Sonya#Bobby

• Same list with a newline delimiter:
Greg
Kwame
Sonya
• Other common delimiters are ‘|’ ‘:’

22

©2005

MIT-Africa Internet
Technology Initiative

StringTokenizer I
• When trying to read a line of input, we get one

long string.

• We need to find the delimiters in the long string
and separate out each of the individual pieces
of information (tokens)

• For this, we use the StringTokenizer class
in java.util

23

©2005

MIT-Africa Internet
Technology Initiative

StringTokenizer I
• When constructing the tokenizer object, you can

specify which characters are the delimiters in your
case

• Default constructor will assume “ \t\n\r” to be delimiters
StringTokenizer r = new StringTokenizer(line);

• Second constructor accepts String of any delimiter
characters

String line = myFile.readline();
StringTokenizer t = new StringTokenizer(line, “#”);
StringTokenizer s = new StringTokenizer(line, “,\&\|”);

24

©2005

MIT-Africa Internet
Technology Initiative

StringTokenizer II

- Useful StringTokenizer methods:

• String nextToken() method returns the
next data token between delimiters in the text

• boolean hasMoreTokens() returns true if
the text has remaining tokens

25

©2005

MIT-Africa Internet
Technology Initiative

Using StringTokenizer
• Printing out every name from a file where

names are delimited by whitespace:
public void printNamesFromFile(String filename) {
BufferedReader br = null;
try {
br = new BufferedReader(new FileReader(filename));
String line = br.readLine();
while(line != null) {

StringTokenizer st = new StringTokenizer(line);
while(st.hasMoreTokens()) {
System.out.println(st.nextToken());

}
line = br.readLine();

}
} catch (IOException e) {
System.out.println("Error reading from file.");

}
if (br != null) { try { br.close(); } catch(IOException e) {} }

}

26

©2005

MIT-Africa Internet
Technology Initiative

Parsing Numbers

• Often necessary to parse numbers
stored as text into Java primitives

• Wrapper classes for primitives provide
static methods to do so
int Integer.parseInt(String s)
double Double.parseDouble(String s)

• Throw NumberFormatException if
the specified String cannot be
converted into the primitive

27

MIT OpenCourseWare
http://ocw.mit.edu

EC.S01 Internet Technology in Local and Global Communities
Spring 2005-Summer 2005

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	What we will learn in this Lecture.
	I/O Basics
	Java I/O Streams
	Input vs Output Streams
	Byte vs. Character Streams
	Important Stream Classes
	Using a Stream class
	Java I/O Classes
	Using Reader
	Reading from a Text File
	BufferedReader
	Using BufferedReader
	POP QUIZ
	Writer
	Writing to a Text File
	Example: Copying Text Files
	Reading From Keyboard Input
	Example: Reading from Keyboard Input
	Streams Conclusion
	Introduction to Parsing
	Delimiters
	StringTokenizer I
	StringTokenizer I
	StringTokenizer II
	Using StringTokenizer
	Parsing Numbers

