
MIT-AITI
Lecture 14: Exceptions

Handling Errors with Exceptions

Kenya 2005

1

©2005

MIT-Africa Internet
Technology Initiative

In this lecture, you will learn…

• What an exception is
• Some exception terminology
• Why we use exceptions
• How to cause an exception
• How to deal with an exception
• About checked and unchecked

exceptions
• Some example Java exceptions
• How to write your own exception

2

©2005

MIT-Africa Internet
Technology Initiative

What is an exception?

• An exception or exceptional event is an event
that occurs during the execution of a program
that disrupts the normal flow of instructions

• The following will cause exceptions:
– Accessing an out-of-bounds array element
– Writing into a read-only file
– Trying to read beyond the end of a file
– Sending illegal arguments to a method
– Performing illegal arithmetic (e.g divide by 0)
– Hardware failures

3

©2005

MIT-Africa Internet
Technology Initiative

Exception Terminology

• When an exception occurs, we say it
was thrown or raised

• When an exception is dealt with, we say
it is handled or caught

• The block of code that deals with
exceptions is known as an exception
handler

4

©2005

MIT-Africa Internet
Technology Initiative

Why use exceptions?

• Compilation cannot find all errors
• To separate error handling code from

regular code
– Code clarity (debugging, teamwork, etc.)
– Worry about handling error elsewhere

• To separate error detection, reporting,
and handling

• To group and differentiate error types
– Write error handlers that handle very

specific exceptions

5

©2005

MIT-Africa Internet
Technology Initiative

Decoding Exception Messages
public class ArrayExceptionExample {

public static void main(String args[]) {
String[] names = {“Bilha", “Robert"};
System.out.println(names[2]);

}
}

• The println in the above code causes an exception to
be thrown with the following exception message:

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 2 at

ArrayExceptionExample.main(ArrayExceptionExampl
e.java:4)

6

©2005

MIT-Africa Internet
Technology Initiative

Exception Message Format

• Exception messages have the
following format:

[exception class]: [additional
description of exception] at
[class].[method]([file]:[line
number])

7

©2005

MIT-Africa Internet
Technology Initiative

Exception Messages Mini Pop-Quiz
• Exception message from array example
java.lang.ArrayIndexOutOfBoundsException: 2 at

ArrayExceptionExample.main(ArrayExceptionExampl
e.java:4)

• What is the exception class?
java.lang.ArrayIndexOutOfBoundsException

• Which array index is out of bounds?
2

• What method throws the exception?
ArrayExceptionExample.main

• What file contains the method?
ArrayExceptionExample.java

• What line of the file throws the exception?
4

8

©2005

MIT-Africa Internet
Technology Initiative

Throwing Exceptions

• All methods use the throw statement to
throw an exception
– if (student.equals(null))

throw new NullPointerException();

• The throw statement requires a single
argument: a throwable object

• Throwable objects are instances of any
subclass of the Throwable class
– Include all types of errors and exceptions
– Check the API for a full listing of throwable

objects

9

©2005

MIT-Africa Internet
Technology Initiative

Handling Exceptions

• You can use a try-catch block to handle
exceptions that are thrown

try {
// code that might throw exception

}
catch ([Type of Exception] e) {

// what to do if exception is thrown
}

10

©2005

MIT-Africa Internet
Technology Initiative

Handling Multiple Exceptions

• You can handle multiple possible
exceptions by multiple successive catch
blocks

try {
// code that might throw multiple
// exceptions

}
catch (IOException e) {

// handle IOException
}
catch (ClassNotFoundException e2) {

// handle ClassNotFoundException
}

11

©2005

MIT-Africa Internet
Technology Initiative

Finally Block

• You can also use the optional finally
block at the end of the try-catch block

• The finally block provides a mechanism
to clean up regardless of what happens
within the try block
– Can be used to close files or to release

other system resources

12

©2005

MIT-Africa Internet
Technology Initiative

Try-Catch-Finally Block
try {

// code that might throw exception
}
catch ([Type of Exception] e) {

// what to do if exception is thrown
}
finally {

// statements here always get
// executed, regardless of what
// happens in the try block

}

13

©2005

MIT-Africa Internet
Technology Initiative

Unchecked Exceptions
• Unchecked exceptions or runtime exceptions

occur within the Java runtime system
• Examples of unchecked exceptions

– arithmetic exceptions (dividing by zero)
– pointer exceptions (trying to access an object’s

members through a null reference)
– indexing exceptions (trying to access an array

element with an index that is too large or too
small)

• A method does not have to catch or specify
that it throws unchecked exceptions, although
it may

14

©2005

MIT-Africa Internet
Technology Initiative

Checked Exceptions

• Checked exceptions or nonruntime
exceptions are exceptions that occur in
code outside of the Java runtime
system

• For example, exceptions that occur
during I/O (covered next lecture) are
nonruntime exceptions

• The compiler ensures that nonruntime
exceptions are caught or are specified
to be thrown (using the throws keyword)

15

©2005

MIT-Africa Internet
Technology Initiative

Handling Checked Exceptions
• Every method must catch checked exceptions OR specify that it

may throw them (using the throws keyword)

void readFile(String filename) {
try {

FileReader reader = new
FileReader("myfile.txt");

// read from file . . .
} catch (FileNotFoundException e) {

System.out.println("file was not found");
}

} OR
void readFile(String filename) throws

FileNotFoundException {
FileReader reader = new FileReader("myfile.txt");
// read from file . . .

}

16

©2005

MIT-Africa Internet
Technology Initiative

Exception Class Hierarchy

Exception

RuntimeException IOException

FileNotFoundException

MalformedURLException

SocketException

ArrayIndexOutOfBounds

NullPointerException

etc. etc.

SQLException

IllegalArgumentException

Unchecked Exceptions Checked Exceptions

• Look in the Java API for a full list of exceptions

17

©2005

MIT-Africa Internet
Technology Initiative

Exceptions and Inheritance
• A method can throw less exceptions, but

not more, than the method it is overriding
public class MyClass {

public void doSomething()
throws IOException, SQLException {

// do something here
}

}

public class MySubclass extends MyClass {
public void doSomething() throws IOException {

// do something here
}

}

18

©2005

MIT-Africa Internet
Technology Initiative

Writing Your Own Exceptions

• There are at least 2 types of exception
constructors:
– Default constructor: No arguments

NullPointerException e = new
NullPointerException();

– Constructor that has a detailed message:
Has a single String argument

IllegalArgumentExceptione e =
new IllegalArgumentException(“Number must
be positive");

19

©2005

MIT-Africa Internet
Technology Initiative

Writing Your Own Exceptions
• Your own exceptions must be a subclass of the Exception class

and have at least the two standard constructors

public class MyCheckedException extends
IOException {
public MyCheckedException() {}
public MyCheckedException(String m){

super(m);}
}

public class MyUncheckedException extends
RuntimeException {
public MyUncheckedException() {}
public MyUncheckedException(String m)

{super(m);}
}

20

©2005

MIT-Africa Internet
Technology Initiative

Checked or Unchecked?

• If a user can reasonably be expected to
recover from an exception, make it a
checked exception

• If a user cannot do anything to recover
from the exception, make it an
unchecked exception

21

©2005

MIT-Africa Internet
Technology Initiative

Lecture Summary

• Exceptions disrupt the normal flow of
the instructions in the program

• Exceptions are handled using a try-
catch or a try-catch-finally block

• A method throws an exception using the
throw statement

• A method does not have to catch or
specify that it throws unchecked
exceptions, although it may

22

©2005

MIT-Africa Internet
Technology Initiative

Lecture Summary

• Every method must catch checked
exceptions or specify that it may throw
them

• If you write your own exception, it must
be a subclass of the Exception class
and have at least the two standard
constructors

23

MIT OpenCourseWare
http://ocw.mit.edu

EC.S01 Internet Technology in Local and Global Communities
Spring 2005-Summer 2005

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	In this lecture, you will learn…
	What is an exception?
	Exception Terminology
	Why use exceptions?
	Decoding Exception Messages
	Exception Message Format
	Exception Messages Mini Pop-Quiz
	Throwing Exceptions
	Handling Exceptions
	Handling Multiple Exceptions
	Finally Block
	Try-Catch-Finally Block
	Unchecked Exceptions
	Checked Exceptions
	Handling Checked Exceptions
	Exception Class Hierarchy
	Exceptions and Inheritance
	Writing Your Own Exceptions
	Writing Your Own Exceptions
	Checked or Unchecked?
	Lecture Summary
	Lecture Summary

