
Lecture 8
Classes and Objects Part 2

MIT AITI
June 15th, 2005

1

©2005

MIT-Africa Internet
Technology Initiative

What is an object?

• A building (Strathmore university)
• A desk
• A laptop
• A car
• Data packets through the internet

2

©2005

MIT-Africa Internet
Technology Initiative

What is an object?

• Objects have two parts:
State: Properties of an object.
Behavior: Things the object can do.

• Car Example:
State: Color, engine size, automatic
Behavior: Brake, accelerate, shift gear

• Person Example:
State: Height, weight, gender, age
Behavior: Eat, sleep, exercise, study

3

©2005

MIT-Africa Internet
Technology Initiative

Why use objects?

• Modularity: Once we define an object,
we can reuse it for other applications.

• Information Hiding: Programmers don’t
need to know exactly how the object
works. Just the interface.

• Example:
Different cars can use the same parts.
You don’t need to know how an engine
works in order to drive a car.

4

©2005

MIT-Africa Internet
Technology Initiative

Classes

• A class is a template or pattern from
which objects are created

• A class contains
Data members (Properties/Characteristics
of the objects/class)
Methods (Determines the behavior of the
objects created from the class)
Constructor (Special Method)

5

©2005

MIT-Africa Internet
Technology Initiative

Anatomy of a class

• You have all seen classes in your labs

• Basic anatomy
public class className{

Data members
Constructor
Methods

}

6

©2005

MIT-Africa Internet
Technology Initiative

Constructors

• Constructors provide objects with the
data they need to initialize themselves,
like “How to Assemble” instructions.

• Objects have a default constructor that
takes no arguments, like LightSwitch().

• We can define our own constructors
that take any number of arguments.

• Constructors have NO return type and
must be named the same as the class:

ClassName(argument signature) { body }

7

©2005

MIT-Africa Internet
Technology Initiative

Recall the LightSwitch Class

• class LightSwitch {
boolean on = true;

}
• The keyword class tells java that we’re

defining a new type of Object.
• Classes are a blueprint.
• Objects are instances of classes.
• Everything in Java (except primitives)

are Objects and have a Class.

8

©2005

MIT-Africa Internet
Technology Initiative

Using Objects
public static void main(String[] args) {

LightSwitch s = new LightSwitch();
System.out.println(s.isOn);
s.flip();
System.out.println(s.isOn);

}
• The new keyword creates a new object.
• new must be followed by a constructor.
• We call methods like:

variableName.methodName(arguments)

9

©2005

MIT-Africa Internet
Technology Initiative

The LightSwitch Class

class LightSwitch {

boolean on = true;

boolean isOn() {
return on;

}

void switch() {
on = !on;

}
}

10

©2005

MIT-Africa Internet
Technology Initiative

A Different LightSwitch Class

class LightSwitch {

int on = 1;

boolean isOn() {
return on == 1;

}

void switch() {
on = 1 - on;

}
}

11

©2005

MIT-Africa Internet
Technology Initiative

Abstraction

• Both LightSwitch classes behave the same.

• We treat LightSwitch as an abstraction:
we do not care about the internal code of
LightSwitch, only the external behavior

• Internal code = implementation
• External behavior = interface

12

©2005

MIT-Africa Internet
Technology Initiative

Why is Abstraction Important?

• We can continue to refine and improve the
implementation of a class so long as the interface
remains the same.

• All we need is the interface to an Object in order to use
it, we do not need to know anything about how it
performs its prescribed behavior.

• In large projects involving several teams, programmers
only need to know what is necessary for their part of the
code (eg. Microsoft, Google, Goldman Sachs, Morgan
Stanley and other financial companies)

13

©2005

MIT-Africa Internet
Technology Initiative

Breaking the Abstraction Barrier

• A user of LightSwitch that relied on the
boolean field would break if we changed
to an integer field

class AbstractionBreaker {
public static void main(String[] args) {
LightSwitch ls = new LightSwitch();

if (ls.on) // now broken!
System.out.println("light is on");

else
System.out.println("light is off");

}
} 14

©2005

MIT-Africa Internet
Technology Initiative

Public versus Private

• Label fields and methods private to ensure
other classes can't access them

• Label fields and methods public to ensure
other classes can access them.

• If they are not labeled public or private, for
now consider them public.

15

©2005

MIT-Africa Internet
Technology Initiative

A Better LightSwitch

class LightSwitch {

private boolean on = true;

public boolean isOn() {
return on;

}

public void switch() {
on = !on;

}
}

16

©2005

MIT-Africa Internet
Technology Initiative

Enforcing the Abstraction Barrier

• By labeling the on field private . . .

• Now AbstractionBreaker's attempt to
access the on field would not have
compiled to begin with.

class LightSwitch {
private boolean on = true;

// . . .
}

if (ls.on) // would never have compiled
17

©2005

MIT-Africa Internet
Technology Initiative

Primitives vs Objects

• Two datatypes in Java: primitives and objects

• Primitives: byte, short, int, long, double, float,
boolean, char

== tests if two primitives have the same value

• Objects: defined in Java classes
== tests if two objects are the same object

18

©2005

MIT-Africa Internet
Technology Initiative

References

• The new keyword always constructs a
new unique instance of a class

• When an instance is assigned to a
variable, that variable is said to hold
a reference or point to that object

• g and h hold references to two different
objects that happen to have identical state

Person g = new Person(“Mwangi", 21);
Person h = new Person(“Mwangi", 21);

19

©2005

MIT-Africa Internet
Technology Initiative

Reference Inequality

• g != h because g and h hold references to
different objects

Person g = new Person(“Mwangi", 21);
Person h = new Person(“Mwangi", 21);

g h

“Mwangi"
21

“Mwangi"
21

20

©2005

MIT-Africa Internet
Technology Initiative

Reference Equality

• greg1 == greg2 because greg1 and
greg2 hold references to the same
object

Person greg1 = new Person("Greg", 23);
Person greg2 = greg1;

greg1

"Greg"
23

greg2

21

©2005

MIT-Africa Internet
Technology Initiative

Equality Quiz 1

• Is (a == b) ?

• Answer: Yes

• Is (g == h) ?

• Answer: No

int a = 7;
int b = 7;

Person g = new Person(“Mwangi", 21);
Person h = new Person(“Mwangi", 21);

22

©2005

MIT-Africa Internet
Technology Initiative

Equality Quiz 2
• true or false?

a) g == h
b) g.getAge() == h.getAge()
c) lucy1 == lucy2
d) lucy1.getAge() == lucy2.getAge();

Person g = new Person(“James", 22);
Person h = new Person("James", 22);
Person lucy1 = new Person(“Lucy", 19);
Person lucy2 = lucy1;

false
true
true
true

23

©2005

MIT-Africa Internet
Technology Initiative

Java API

• You can get information on all in-built Java
classes/methods by browsing the Java
Application Programming Interface (API)

• This documentation is essential to building
any substantial Java application

24

MIT OpenCourseWare
http://ocw.mit.edu

EC.S01 Internet Technology in Local and Global Communities
Spring 2005-Summer 2005

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	What is an object?
	What is an object?
	Why use objects?
	Classes
	Anatomy of a class
	Constructors
	Using Objects
	The LightSwitch Class
	A Different LightSwitch Class
	Abstraction
	Why is Abstraction Important?
	Breaking the Abstraction Barrier
	Public versus Private
	A Better LightSwitch
	Enforcing the Abstraction Barrier
	Primitives vs Objects
	References
	Reference Inequality
	Reference Equality
	Equality Quiz 1
	Equality Quiz 2
	Java API

