Lecture 8
Classes and Objects Part 2

MIT AITI
June 15th, 2005

What Is an object?

® A building (Strathmore university)
® A desk

® A laptop

® Acar

® Data packets through the internet

y .

ﬁ’%ﬂ e V11 T-Africa Internet] f
JH Ul Technology Initiative ;|
2 & | ©2005

What is an object?

® Objects have two parts:
e State: Properties of an object.
e Behavior: Things the object can do.

® Car Example:
e State: Color, engine size, automatic
e Behavior: Brake, accelerate, shift gear

® Person Example:
e State: Height, weight, gender, age
e Behavior: Eat, sleep, exercise, study

ﬁ% MIT-Africa Internet -]
[P Technology Initiative | '
| ; = 1 ©2005

Why use objects?

® Modularity: Once we define an object,
we can reuse it for other applications.

® Information Hiding: Programmers don't
need to know exactly how the object
works. Just the interface.

® Example:

e Different cars can use the same parts.

e You don't need to know how an engine
works in order to drive a car.

%"%ﬂ MIT-Africa Internet -]
[P Technology Initiative | '
Pakii . = 1 ©2005

Classes

® A class is a template or pattern from
which objects are created

® A class contains

e Data members (Properties/Characteristics
of the objects/class)

e Methods (Determines the behavior of the
objects created from the class)

e Constructor (Special Method)

ﬁ% MIT-Africa Internet -]
[P Technology Initiative | '
| . = 1 ©2005

Anatomy of a class

® You have all seen classes in your labs

® Basic anatomy

e public class className{
e Data members

e Constructor
e Methods

}

y .

& MIT-Africa Internet -
= Technology Initiative |

| ©2005

Constructors

® Constructors provide objects with the
data they need to initialize themselves,
like “How to Assemble” instructions.

® Objects have a default constructor that
takes no arguments, like LightSwitch().

® \We can define our own constructors
that take any number of arguments.

® Constructors have NO return type and
must be named the same as the class:

e ClassName(argument signature) { body }

T e M1T-Africa Internet i
= Technology Initiative |
7

| ©2005

Recall the LightSwitch Class

®class LightSwtch {
bool ean on = true;

}

® The keyword class tells java that we're
defining a new type of Object.

® Classes are a blueprint.
® Objects are instances of classes.

® Everything in Java (except primitives)
are Objects and have a Class.

ﬁ% MIT-Africa Internet -]
{ L Technology Initiative | '
| . = 1 ©2005

Using Objects

public static void main(String[] args) {
LightSwmtch s = new LightSw tch();
Systemout.println(s.isOn);

s.flip();
Systemout.println(s.isOn);

}
® The new keyword creates a new object.

®* new must be followed by a constructor.

®* We call methods like:
e variableName.methodName(arguments)

ﬁ’\%ﬂ MIT-Africa Internet -] 1
= Technology Initiative |
' £ | ©2005

The LightSwitch Class

class LightSwtch {

bool ean on = true;

bool ean 1sOn() {
return on;

}
void swtch() {
on = !on;

€ — MIT-Africa Intern‘étf-—‘
=i Technology Initiative |
10

| ©2005

A Different LightSwitch Class

class LightSw tch {
Int on = 1;

bool ean 1sOn() {
return on == 1;

}

void swtch() {
on =1 - on;
} it U
A — MIT-Africa Intern‘ét’"-—‘_ ’ L,-"
ﬁ ;%ﬁ y Technology Initiative :--@2005

Abstraction

® Both LightSwitch classes behave the same.

®* We treat LightSwitch as an abstraction:
we do not care about the internal code of
LightSwitch, only the external behavior

® Internal code = implementation
® External behavior = interface

ﬁ% MIT-Africa Internet -]
{ L Technology Initiative | '
' 1 sy -©2005

Why Is Abstraction Important?

®* \We can continue to refine and improve the
implementation of a class so long as the interface
remains the same.

® All we need is the interface to an Object in order to use
it, we do not need to know anything about how it
performs its prescribed behavior.

® In large projects involving several teams, programmers
only need to know what is necessary for their part of the
code (eg. Microsoft, Google, Goldman Sachs, Morgan
Stanley and other financial companies)

%"%ﬂ MIT-Africa Internet -]
[P Technology Initiative | '
Pakii = 1 ©2005

13

Breaking the Abstraction Barrier

® A user of LightSwitch that relied on the
boolean field would break if we changed
to an integer field

cl ass Abstracti onBreaker {
public static void main(String[] args) {
LightSwtch |s = new LightSw tch();

1 f (ls.on) // now broken!
Systemout.printin("light is on");

el se
Systemout.printin("light is off");

Ly _ MIT-Africa Internet
I : :I}

Technology Initiative |

14 @2005

Public versus Private

® | abel fields and methods private to ensure
other classes can't access them

® [abel fields and methods public to ensure
other classes can access them.

® |f they are not labeled public or private, for
now consider them public.

ﬁ% MIT-Africa Internet -]
[P Technology Initiative | '
' 1 sy -©2005

A Better LightSwitch

class LightSwtch {
private bool ean on = true;

public bool ean isOn() {
return on;

}

public void swtch() {
on = lon;
ﬁ 7\%& } MIT-Africa Interﬁéta.‘ 1_’
b —mTechnomgy Initiative ©2005

Enforcing the Abstraction Barrier

® By labeling the on field private . ..

class LightSwmtch {
private bool ean on = true;

/]
}

® Now AbstractionBreaker's attempt to
access the on field would not have
compiled to begin with.

ﬁif (Is.on) // would never have conpiled =

ﬁ % MIT-Africa Internet - i
il Technology Initiative | '
& ©2005

17

Primitives vs Objects

® Two datatypes in Java: primitives and objects

®* Primitives: byte, short, int, long, double, float,
boolean, char

== tests if two primitives have the same value

= ObjectS' defined in Java classes
= tests if two objects are the same object

MIT-Africa Internet

] Al
{ -.* Technol Initiative |
. nology Initiative @2005

References

® The new keyword always constructs a
new unique instance of a class

® \WWhen an instance is assigned to a
variable, that variable is said to hold
a reference or point to that object

new Person(“Mvangi ", 21);
new Person(“Mvangi ", 21);

® g and h hold references to two different
objects that happen to have identical state

%% MIT-Africa Internet ;l
=it Technology Initiative |
elic o = 1 ©2005

Person ¢
Person h

Reference Inequality

® g I= h because g and h hold references to
different objects

Person g = new Person(“Mwvangi ", 21);
Person h = new Person(“Mvangi ", 21);

T

:f”_l - ..
d 1

Afried Internet -
Technology Initiative |

| ©2005

Reference Equality

® greg1 == greg2 because greg1 and
greg2 hold references to the same
object

Person gregl
Per son greg2

new Person("Geg", 23);
gregl;

gregl \
/

greg2

ﬁ’%ﬂ MIT-Africa Internet -]
iz il Technology Initiative | __ _
' 21 & | ©2005

Equality Quiz 1

*ls(a == b) ?

/;
/;

I nt a
Int b

®Is(g == h) ?

Person g = new Person(“Mwvangi ", 21);
Person h = new Person(“Mvangi ", 21);

:jf_l -
4 1

ﬁ%ﬁ MIT-Africa Internet - ¥
=it Technology Initiative | ___
2 & | ©2005

Equality Quiz 2

® true or false?

Person g = new Person(“Janmes"”, 22);
Person h = new Person("Janmes", 22),
Per son lucyl = new Person(®Lucy", 19);
Person |ucy2 = |ucyl,;

a) g ==

b) g.getAge() == h.getAge()

C) lucy1 == lucy?2

d) lucy1.getAge() == lucy2.getAge();

ﬁ% MIT-Africa Internet -]
{ L Technology Initiative | '
' 2 sy -©2005

Java API

® You can get information on all in-built Java
classes/methods by browsing the Java
Application Programming Interface (API)

® This documentation is essential to building
any substantial Java application

ﬁ% MIT-Africa Internet -]
{ L Technology Initiative | '
| ” = 1 ©2005

MIT OpenCourseWare
http://ocw.mit.edu

EC.S01 Internet Technology in Local and Global Communities
Spring 2005-Summer 2005

For information about citing these materials or our Terms of Use, visit:http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	What is an object?
	What is an object?
	Why use objects?
	Classes
	Anatomy of a class
	Constructors
	Using Objects
	The LightSwitch Class
	A Different LightSwitch Class
	Abstraction
	Why is Abstraction Important?
	Breaking the Abstraction Barrier
	Public versus Private
	A Better LightSwitch
	Enforcing the Abstraction Barrier
	Primitives vs Objects
	References
	Reference Inequality
	Reference Equality
	Equality Quiz 1
	Equality Quiz 2
	Java API

