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What is an object?

• A building (Strathmore university)
• A desk
• A laptop
• A car
• Data packets through the internet
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What is an object?

• Objects have two parts:
State: Properties of an object.
Behavior: Things the object can do.

• Car Example:
State: Color, engine size, automatic
Behavior: Brake, accelerate, shift gear

• Person Example:
State: Height, weight, gender, age
Behavior: Eat, sleep, exercise, study
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Why use objects?

• Modularity: Once we define an object, 
we can reuse it for other applications.

• Information Hiding: Programmers don’t 
need to know exactly how the object 
works. Just the interface.

• Example:
Different cars can use the same parts. 
You don’t need to know how an engine 
works in order to drive a car.
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Classes

• A class is a template or pattern from 
which objects are created

• A class contains
Data members (Properties/Characteristics 
of the objects/class)
Methods (Determines the behavior of the 
objects created from the class)
Constructor (Special Method)
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Anatomy of a class

• You have all seen classes in your labs

• Basic anatomy
public class className{

Data members
Constructor
Methods

}
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Constructors

• Constructors provide objects with the 
data they need to initialize themselves, 
like “How to Assemble” instructions. 

• Objects have a default constructor that 
takes no arguments, like LightSwitch().

• We can define our own constructors 
that take any number of arguments.

• Constructors have NO return type and 
must be named the same as the class:

ClassName(argument signature) { body }
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Recall the LightSwitch Class

• class LightSwitch { 
boolean on = true; 

}
• The keyword class tells java that we’re 

defining a new type of Object.
• Classes are a blueprint.
• Objects are instances of classes.
• Everything in Java (except primitives) 

are Objects and have a Class.
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Using Objects
public static void main(String[] args) {

LightSwitch s = new LightSwitch();
System.out.println(s.isOn);
s.flip();
System.out.println(s.isOn);

}
• The new keyword creates a new object.
• new must be followed by a constructor.
• We call methods like:

variableName.methodName(arguments)
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The LightSwitch Class

class LightSwitch {

boolean on = true;

boolean isOn() {
return on;

}

void switch() {
on = !on;

}
}
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A Different LightSwitch Class

class LightSwitch {

int on = 1;

boolean isOn() {
return on == 1;

}

void switch() {
on = 1 - on;

}
}
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Abstraction

• Both LightSwitch classes behave the same.

• We treat LightSwitch as an abstraction: 
we do not care about the internal code of 
LightSwitch, only the external behavior

• Internal code = implementation
• External behavior = interface

12



©2005

MIT-Africa Internet 
Technology Initiative

Why is Abstraction Important?

• We can continue to refine and improve the 
implementation of a class so long as the interface 
remains the same.

• All we need is the interface to an Object in order to use 
it, we do not need to know anything about how it 
performs its prescribed behavior.

• In large projects involving several teams, programmers 
only need to know what is necessary for their part of the 
code (eg. Microsoft, Google, Goldman Sachs, Morgan 
Stanley and other financial companies)
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Breaking the Abstraction Barrier

• A user of LightSwitch that relied on the 
boolean field would break if we changed 
to an integer field

class AbstractionBreaker {
public static void main(String[] args) {
LightSwitch ls = new LightSwitch();

if (ls.on) // now broken!
System.out.println("light is on");

else
System.out.println("light is off");

}
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Public versus Private

• Label fields and methods private to ensure 
other classes can't access them

• Label fields and methods public to ensure 
other classes can access them.

• If they are not labeled public or private, for 
now consider them public.
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A Better LightSwitch

class LightSwitch {

private boolean on = true;

public boolean isOn() {
return on;

}

public void switch() {
on = !on;

}
}
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Enforcing the Abstraction Barrier

• By labeling the on field private  . . .

• Now AbstractionBreaker's attempt to 
access the on field would not have 
compiled to begin with.

class LightSwitch {
private boolean on = true;

// . . .
}

if (ls.on)  // would never have compiled
17



©2005

MIT-Africa Internet 
Technology Initiative

Primitives vs Objects

• Two datatypes in Java: primitives and objects

• Primitives: byte, short, int, long, double, float, 
boolean, char

== tests if two primitives have the same value

• Objects: defined in Java classes
== tests if two objects are the same object
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References

• The new keyword always constructs a 
new unique instance of a class

• When an instance is assigned to a 
variable, that variable is said to           hold 
a reference or point to that object

• g and h hold references to two different 
objects that happen to have identical state

Person g = new Person(“Mwangi", 21);
Person h = new Person(“Mwangi", 21);
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Reference Inequality

• g != h because g and h hold references to 
different objects

Person g = new Person(“Mwangi", 21);
Person h = new Person(“Mwangi", 21);

g h

“Mwangi"
21

“Mwangi"
21
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Reference Equality

• greg1 == greg2 because greg1 and 
greg2 hold references to the same 
object

Person greg1 = new Person("Greg", 23);
Person greg2 = greg1;

greg1

"Greg"
23

greg2
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Equality Quiz 1

• Is (a == b) ?

• Answer: Yes

• Is (g == h) ?

• Answer: No

int a = 7;
int b = 7;

Person g = new Person(“Mwangi", 21);
Person h = new Person(“Mwangi", 21);
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Equality Quiz 2
• true or false?

a) g == h
b) g.getAge() == h.getAge()
c) lucy1 == lucy2
d) lucy1.getAge() == lucy2.getAge();

Person g = new Person(“James", 22);
Person h = new Person("James", 22);
Person lucy1 = new Person(“Lucy", 19);
Person lucy2 = lucy1;

false
true
true
true
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Java API

• You can get information on all in-built Java 
classes/methods by browsing the Java 
Application Programming Interface (API)

• This documentation is essential to building 
any substantial Java application
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