Lecture 7/

Obg’ects and Classes
An Infroduction to Data Abstraction

MIT AITI
June 13th, 2005

What do we know so far?

®* Primitives: int, double, boolean, String*
® Variables: Stores values of one type.

® Arrays: Store many of the same type.
® Control Structures: If-then, For Loops.

®* Methods: Block of code that we can
pass arguments to and run anytime.

® |s this all we need?

ﬁ% MIT-Africa Internet -]
{ L Technology Initiative | '
|) = 1 ©2005

So what’s the problem?

® Some data “sticks” together.
- String[] nanes
- int[] grades

® Methods start to get complicated.
® Methods can only return one type.

® Programmers don't want to think about
all the underlying types.

ﬁ% MIT-Africa Internet -]
{ L Technology Initiative | '
| ; = 1 ©2005

Abstraction

® Objects are tools for abstraction.

®* We abstract away details to deal with
complex problems.

® Abstraction is a fundamental concept In
computer science.

® There can be too much abstraction.

® The art is knowing which details to hide
away and which to preserve.

%"%ﬂ MIT-Africa Internet -]
{ L Technology Initiative | '
Pakii . = 1 ©2005

What is an object?

® Objects have two parts:
- State: Properties of an object.
- Behavior: Things the object can do.

® Car Example:

- State: Color, engine size, automatic

- Behavior: Brake, accelerate, shift gear
® Person Example:

- State: Height, weight, gender, age

- Behavior: Eat, sleep, exercise, study

ﬁ% MIT-Africa Internet -]
[P Technology Initiative | '
| . = 1 ©2005

What is an Object?

Figures removed for copyright reasons.

See http://java.sun.com/docs/books/tutorial/jav ncepts/obj

A Generic Object An Bicycle Object

;"/—r'_‘\
y

MIT-Africa Internét™ /|
Technology Initiative |

- ©2005

i
%

http://java.sun.com/docs/books/tutorial/java/concepts/object.html

Why use objects?

®* Modularity: Once we define an object,
we can reuse it for other applications.

® Information Hiding: Programmers don't
need to know exactly how the object
works. Just the interface.

® Example:
— Different cars can use the same parts.

- You don’t need to know how an engine
works in order to drive a car.

%"%ﬂ MIT-Africa Internet -]
[P Technology Initiative | '
Pakii . = 1 ©2005

Our first Class: LightSwitch

®class LightSwtch {
bool ean on = true;

}

® The keyword class tells java that we're
defining a new type of Object.

® Classes are a blueprint.
® Objects are instances of classes.

® Everything in Java (except primitives)
are Objects and have a Class.

ﬁ% MIT-Africa Internet -]
{ L Technology Initiative | '
| . = 1 ©2005

Classes

Figures removed for copyright reasons.

See "MyBike" and "YourBike" figures at http://java.sun.com/docs/books/tutorial/java/concepts/class.html

A Bicycle Class

Two instances of the Bicycle Class __

&
y y

MIT-Africa Interﬂ\étn‘1 d
Technology Initiative |

- ©2005

http://java.sun.com/docs/books/tutorial/java/concepts/class.html

Our first Class: LightSwitch

®class LightSwmtch {
bool ean 1sOn = true;

}
®* \What state do LightSwitches have?

® State stored in fields: here it's “isOn”.

® Fields are accessed using:
- variableName.fiel[dName
- (We'll discuss other types of fields later.)

® What behavior do LightSwitches have?

L V1] | -AfTica Internet "] '
; i Technology Initiative |
10

| ©2005

Adding Behavior

® class LightSwtch {
bool ean 1sOn = true;

void flip() {
this.1sOn = this.IsOn;

}

® The this keyword means this particular object.
Objects know themselves.

® t hi s.1sOn accesses the 1 sOn field.
® What behavior does LightSwitch have now?

ﬁ’\%ﬂ MIT-Africa Internet -] 1
= Technology Initiative |
' 3 £ | ©2005

Using Objects

public static void main(String[] args) {
LightSwtch s = new LightSw tch();
Systemout.println(s.isOn);

s.flip();
Systemout.println(s.isOn);

}
® The new keyword creates a new object.

®* new must be followed by a constructor.

®* We call methods like:
- variableName.methodName(arguments)

®* \What does this code output?

ﬁ’%ﬂ MIT-Africa Internet -]
iz il Technology Initiative | __ _
' & | ©2005

12

Constructors

® Constructors provide objects with the
data they need to initialize themselves,
like “How to Assemble” instructions.

® Objects have a default constructor that
takes no arguments, like LightSwitch().

® \WWe can define our own constructors
that take any number of arguments.

® Constructors have NO return type and
must be named the same as the class:

- ClassName(argument signature) { body }

T e M1T-Africa Internet |
= Technology Initiative |
13

| ©2005

Constructors

® class LightSwtch {
bool ean 1 sOn;
void flip() {
this.isOn = !'this.isOn;
}
Li ght Swm tch(bool ean startState) {
this.isOn = start St at e;

}

® The LightSwitch() constructor no longer
works. How do we instantiate an object?

ﬁ’\%ﬂ MIT-Africa Internet -] i
I A Technology Initiative | __
& - ©2005

14

Multiple Constructors

®* \We can have multiple constructors.

® Constructors can call each other.
_ Li ght Swi tch() {

Light Swm tch(true);

}
- Light Sw tch(bool ean start St ate) {

this.isOn = 1 sOn;
}

ﬁ’%ﬂ MIT-Africa Internet -]
iz il Technology Initiative | __ _
' . & | ©2005

Pop Quiz

® \WWhat two properties do objects have?

® \What is the difference between a class
and an object?

® What is a field?

®* \WWhat does the this keyword mean?
®* \What does the new keyword do?

®* \What is a constructor?

ﬁ% e MIT-Africa Internet]
LU Pk Technology Initiative | '
' . & | ©2005

BankAccount Example

cl ass BankAccount {

doubl e bal ance;

String nane;

BankAccount (Stri ng nane,

doubl e openBal ance) {

t his. nane = nane;
t hi s. bal ance = openBal ance;

} /] Continued next slide

:jf_l -
4 1

ﬁ%ﬁ MIT-Africa Internet - ¥
=it Technology Initiative | ___
7 & | ©2005

BankAccount Example

doubl e deposit(doubl e anmount) {
bal ance += anount;
return bal ance;
}
bool ean wi t hdraw(doubl e anount) {
| f (amount < bal ance) {
bal ance -= anount,;
return true;
} else return false;

}
}// End BankAccount C ass

. - .
4 1

MIT-Africa Internet -
Technology Initiative |

» | ©2005

MIT OpenCourseWare
http://ocw.mit.edu

EC.S01 Internet Technology in Local and Global Communities
Spring 2005-Summer 2005

For information about citing these materials or our Terms of Use, visit:http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	Lecture 7Objects and Classes
	What do we know so far?
	So what’s the problem?
	Abstraction
	What is an object?
	What is an Object?
	Why use objects?
	Our first Class: LightSwitch
	Classes
	Our first Class: LightSwitch
	Adding Behavior
	Using Objects
	Constructors
	Constructors
	Multiple Constructors
	Pop Quiz
	BankAccount Example
	BankAccount Example

