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Notes on Tax Implementation
 

Iván Werning 

Certainty 

•	 utility
 

U(x, θ)
 

where x ∈ X is a vector and θ ∈ Θ is worker types 

•	 Example 1: Mirrlees (1971) has x = (c, −y) where c is consumption y is effective 

labor; in this case we want to know study the non-linear income tax schedule. 

•	 Example 2: Two-period model with labor in the first period and consumption in 

both periods: U(c0, c1, y0); in this example we’d like to study the nonlinear taxation 

of income and the taxation of savings [Atkinson-Stiglitz applies if U is separable] 

•	 at this stage: no assumption on preferences (conavity, dimentionality of Θ, single 

crossing, etc.) needed 

•	 define MRS 
Ui(x, θ)

MRSij(x, θ) =
Uj(x, θ) 

•	 when x̂(θ) is an optimal allocation, it to look at the “wedges” or “implicit marginal 
taxes” defined by either 

pj MRSij(x̂(θ), θ)
MRSij(x̂(θ), θ)− or 

pi pj/pi 

we want to understand to what extent these measures are related to explicit taxes 
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1.1 The Problem of Implementation...
 

•	 incentive compatible allocation is a function x̂ : Θ → X such that 

U(x̂(θ), θ) ≥ U(x̂(θ'), θ) ∀θ, θ' ∈ Θ2 (1) 

•	 implementability question: what budget sets B can we confront agent with and get 
x̂ allocation? 

x̂(θ) ∈ arg max U(x, θ) (2) 
x∈B 

•	 Note: B is independent of θ
 

...captures anonymous taxation
 

1.2 ...Its Solution... 

•	 smallest set that works... 

B ≡ {x | ∃θ ∈ Θ s.t. x = x̂(θ)}
 

note that: incentive compatibility (1) implies (2) with B
 

•	 this gives as much choice as the direct mechanism!...
 
... not a lot of choice if X has high dimension and Θ is low dimension
 

•	 largest set?
 
¯
B ≡ {x | U(x, θ) ≤ U(x̂(θ), θ) ∀θ ∈ Θ} 

equivalently
 
¯
B ≡ {x | U(x, θ) ≤ v̂(θ) ∀θ ∈ Θ}
 

where v̂(θ) ≡ U(x̂(θ), θ)
 

•	 full characterization: any set B such that 

B ⊆ B ⊆ B̄


also implements x̂


1.3 ...In Terms of Taxes 

•	 to think of taxation... 
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– benchmark budget without tax:
 

p · x ≤ 0 

–	 T(x) function such that 
p · x + T(x) ≤ 0
 

is equivalent to x ∈ B where B implements x̂


–	 for lowest possible taxes use B = B̄

•	 numeraire good: x = (x1, x−1) with p1 = 1 then 

x1 + T(x−1) + p−1 · x−1 ≤ 0 

•	 retention function... 

x1 ≤ R(x−1) = −(T(x−1) + p−1 · x−1) 

•	 to implement we need
 

x̂1(θ) = R(x̂−1(θ)) θ ∈ Θ
 

and 

R(x−1) ≤ R̂(x−1) ≡ max x1 s.t. U(x1, x−1, θ) ≤ v̂(θ) ∀θ ∈ Θ 
x1 

•	 equivalently: need R(x−1) ≤ R̂(x−1) for all x ∈ X and R(x−1) = R̂(x−1) for x ∈ B. 

•	 invert...
 
U(x1, x−1, θ) ≤ v̂(θ)
 

to write...
 
x1 ≤ U−1(v̂(θ), x−1, θ)
 

•	 then
 

R̂(x−1) ≡ min U−1(v̂(θ), x−1, θ)
 
θ∈Θ 

1.4 Some Properties of the Solution 

•	 idea: since R̂ defined as optimization, we can apply Maximum and Envelope Theo­
rems 
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• economic questions...
 

–	 how much more choice? 

–	 marginal taxes exist? 

–	 do they equal wedges? 

•	 Maximum Theorem: Assume U : X × Θ → R is continuous, then v̂(θ) and R̂(x−1) 

are continuous functions; the set 

M(x−1) ≡ arg min U−1(v̂(θ), x−1, θ) 
θ∈Θ 

is upper hemi continuous correspondence (note that θ ∈ M(x̂−1(θ))) 

•	 this means we never impose sharp penalties in the sense of discontinuous taxes; 

•	 In contrast, the direct mechanism implicitly imposes infinite taxes for any allocation 

outside B! In this sense, Taxes are very discontinous. 

•	 Envelope Theorem: Suppose U is differentiable w.r.t. x and M(x−1) is single valued, 
then 

∂ 
∂x−1 

U(R̂(x−1), x−1, M(x−1))∂	 ∂
R̂(x−1) ≡ U−1(v̂(M(x−1)), x−1, M(x−1)) = − 

∂∂x−1 ∂x−1	 U(R̂(x−1), x−1, M(x−1))∂x1 

That is, 
∂ 

R̂(x−1) =  MRSx1,x−1 (R̂(x−1), x−1, M(x−1))
∂x−1 

•	 M(x−1) is single valued means that only one type θ is indifferent to (R̂(x−1), x−1). 

•	 This provides a condition for the marginal tax to exist and equal the tax wedge along 

the equilibrium set B. 

•	 If M(x−1) is not single valued then we candidate MRSs... 
...this actually implies kinks in R̂
...we can still compute left and right derivatives 

•	 for example: static Mirrlees (1971) when bunching occurs we get a convex kink in 

income tax schedule 
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1.5 Linear Taxes? 

• can we choose a subset of goods to be taxed linearly? (not taxed is particular case, 
e.g. Atkinson-Stiglitz) 

• suppose we can divide goods x = (xa , xb) so that 

x̂b(θ) = x̂b(θ ' ) =⇒ x̂a(θ) = x̂a(θ ' ) ∀θ, θ ' ∈ Θ2 

i.e. xb identifies xa, write
 
a
x = α̂(xb) 

•	 typically
 

dim Θ = dim Xb ≤ dim X
 

so this can be done 

•	 define support of xb
 

b
Bb ≡ {xb | ∃θ ∈ Θ x = x̂b(θ)} 

• now, for given xb consider the set 

a b	 aB(xb) ≡ {xa | U(x , x , θ) ≤ v̂(θ) ∀θ ∈ Θ} = {xa | (x , xb) ∈ B̄} 

• given xb ∈ B̄b define a linear set 

BL(xb) = {xb | q(xb) · (xa − α̂(xb)) ≤ 0} 

for some consumer prices q which may depend on xb 

• note: α̂(xb) ∈ BL(xb) 

• “mixed taxation”... 

B = {x | xa ∈ BL(xb) and xb ∈ Bb} 

• Question: can this implement x̂? 

•	 Yes, if and only if
 
BL(xb) ⊆ B(xb)
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• sufficient condition: holds if [B(xb)]c is convex 

•	 in terms of taxes: 
ap · x + T(x , xb) ≤ 0
 

given xb can we make T(·, xb) linear? i.e.
 

a	 aT(x , xb) = t(xb) + τ(xb) · x

¯•	 sufficient condition: if T(·, xb) is convex then we use linear tangent 

•	 Example: two-period consumption, linear tax on savings that depends on income 

•	 with finite types and binding IC constraints: 

1. kinks! linear tax not possible 

2. but as types are closer: kinks get smaller 

3. near optimal allocation do not require kinks: linear tax possible 

•	 with continuum of types: possible 

1.6 Interdependence of Taxation 

•	 note the tradeoff: linear tax but dependent on xb 

•	 sometimes possible to separate taxes... 

aT(x , xb) = tb(xb) + ta(xa) 

•	 Example: consumption two periods, nonlinear tax on income and savings (Estate 

Taxation paper Farhi-Werning) 

2 Uncertainty 

•	 opens many possibilities...
 
general implementation: a dynamic choice problem
 

• Today: less general
 

• only uncertainty is θ1 at t = 1
 

6
 



–	 pre-committed goods z (scalar; to simplify) 

–	 ex-post goods x(θ) (vector) 

•	 Resource constraint: ˆ
1 

z + px · x(θ)dF(θ) ≤ e
R
 

with first element being numeraire: px,1 = 1
 

•	 Utility ˆ
E[U(z, x, θ)] = U(z, x(θ), θ)dF(θ) 

•	 Example: two period Inverse euler example z = c0 and x = (c1, y1) 

U(c0, (c1, y1), θ) =  u(c0) +  βu(c1) − h(y1; θ) 

•	 we take as given allocation ẑ and x̂(θ) and try to implement it 

•	 intertemporal wedge 

(1 + τ)E[Uz(ẑ, x̂(θ), θ)] = RE[Ux1 (ẑ, x̂(θ), θ)] 

•	 Incentive compatibility... 

U(ẑ, x̂(θ), θ) ≥ U(ẑ, x̂(θ ' ), θ) θ ' , θ ∈ Θ2 

•	 Budget constraint 
z + s + Ts(s) ≤ ẑ

px · x + Tx(x−1) ≤ Rs 

•	 note that Ts does not depend on θ 

•	 we want to implement s = 0 (by “Ricardian equivalence” we could also do things 

with for any s  = 0) 

•	 Define Tx(x−1) ≡ −R1 
x(x−1) − p−1 · x−1 

Rx(x−1) ≡ min U−1(x−1, ẑ, θ) 
θ 
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•	 utility given this is... 
v(z, s, θ) ≡ max U(z, x, θ)

x 

s.t. px · x + Tx(x−1) ≤ Rs 

•	 This function v(z, s, θ) is continuos and differentiable in regions where the maxi­
mum is unique 

•	 the Envelope condition at the proposed solution... 

vz(ẑ, 0,  θ) = Uz(ẑ, x̂(θ), θ) 

vs(z, 0,  θ) = Ux1 (ẑ, x̂(θ), θ) 

•	 expected utility is ˆ
V(z, s) ≡ v(z, x, θ)dF(θ) 

•	 this function shares properties with v; it may be smoother even due to the averaging 

across θ...
 

∂ ∂
•	 ...if θ is continouosly distributed, V(z, s) and V(z, s) exist and ∂s ∂z

ˆ
∂ 

V(z, s) = vs(z, s, θ)dF(θ)
∂s 

ˆ
∂ 

V(z, s) = vz(z, s, θ)dF(θ)
∂z
 

since the countable kinks in v do not matter when we average
 

•	 Now at t = 0 we want (z, s) = (ẑ, 0) so that 

B̄z(z, s) = {(z, s) | V(z, s) ≤ V(ẑ, 0)} 

defines the largest set of pairs (z, s) that can be offered. Then 

V(z, s) = V(ẑ, 0) 

defines the frontier of this set. In terms of taxes
 

V(ẑ − s − Ts(s), s) = V(ẑ, 0)
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• Differentiating the definition of T at equilibrium then gives 

1 + 
∂ 

Ts(s) E[Uz1 (ẑ, x̂(θ), θ)] = E[Ux1 (ẑ, x̂(θ), θ)]
∂s 

• if F(θ) is not continuos then we may have kinks in Ts 

2.1 Alternative: State Contingent Linear Taxes 

• separable utility case 

• Kocherlakota proposes state dependent taxes 

• define state dependent wedges: 

Uz1 (ẑ, x̂(θ ' ), θ) = (1 − τ(θ ' ))RUx1 (ẑ, x̂(θ ' ), θ) 

with separability only depends on θ ' 

•	 Budget constraint then
 

z + s ≤ ẑ


x1(θ ' ) = (1 − τ(θ ' ))Rs + x̂1(θ ' ) 

x−1(θ ' ) = x̂−1(θ ' ) 

•	 note: we can turn this into
 

z + s ≤ ẑ


x1 + p · x−1 + T(x−1) = (1 − τ(x−1))Rs 
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