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Two-Sector Models: Partial Factor Taxes 
 
 The classical Harberger (1962 JPE) analysis of tax 
incidence takes place in a two-sector economy.  
Production takes place in two sectors according to 
constant returns technology.  Both sectors employ labor 
and capital.  
 
 Production:  X1 = F1(L1, K1) 
 
     X2 = F2(L2, K2) 
 
F1 and F2 are constant-returns-to-scale production 
functions. 
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p1 and p2 are the producer prices for goods 1 and 2.  No 
excise taxes, so producer prices equal consumer prices. 
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 Factor Supplies: 
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These equations assume full employment of both factors, 
and a fixed total supply of both capital and labor.  What 
"run" does this correspond to?  Capital and labor can 
move across sectors, but total amounts are fixed. 
 
 Factor Returns: w = p1F1L (L1,K1) 
 
     w = p2F2L (L2,K2) 
 
     r = (1 – τ) p1F1K (L1,K1) 
 
     r = p2F2K (L2,K2). 
 
τ is a partial factor tax on capital in sector 1.  The 
government is assumed either to return the revenue it 
collects in lump-sum fashion to households, or to spend it 
in the same way that households would.  (When the 
government’s spending patterns are the same as the 
private sector's, one wonders why there is a government!  
But when the government’s spending pattern differs from 
that of the private sector, there can be effects on factor 
rewards simply from these demand effects.) 
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 Choosing a convenient price normalization can 
simplify the algebra in analyzing two-sector models.  An 
attractive choice is w ≡ 1.  With this normalization, 
studying changes in relative factor rewards, d(r/w)/dτ, 
reduces studying to dr/τ.  Analyzing the system is easiest 
if we take a slightly different approach and distill the 
system to five equations in five unknowns: 
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The first two equations restate the constant returns 
assumption.  Equations (3) and (4) are just definitions of 
substitution elasticities, taking account of taxes in sector 
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one to recognize that the pre-tax marginal product of 
capital is r/(1-τ).  Equation (5) is the goods market 
equilibrium condition.  By Walras’ Law, when both factor 
markets and the market for good 1 clear, the market for 
good 2 also clears. 
 
 Now differentiate this system and translate into log 
derivatives (ˆ denotes a log derivative such as dlogr/r.)r     
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good 1 in terms of good 2.   
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In deriving (5′) from (5), recall that we are free to choose 
the units of measurement for goods 1 and 2.  For example, 
if we can measure the good “coffee” in arbitrary units, 
and if one pound of coffee costs $5.00, then by selecting 
the unit of measurement to be a fifth of a pound of coffee, 
we can set the price of this “good” to unity.  Choosing in 
this way we can set 1pp

21
  in the initial equilibrium.  

This means that 
11
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To solve (1′) – (5′) for d offunction  a as r , we start by 
substituting out 

21
p andp  in (5′) and (4′), and use (3′) to 

solve for 1K
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in these expressions.  This yields: 
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It is straightforward to solve (5′′) for 
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Equation (4′′) can be rewritten 
 
(4′′′) .dL(r

1K1LKK12



))(  

 



 7 

We can then substitute (5′′′) into (4′′′) and solve to find: 
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This is the general result of the two-sector analysis.  All 
of the well known simplifications and “intuitions” from 
this model arise as special cases of (7). 
 
The expression multiplying d in (7) cannot be signed a 
priori.  Rather, we need to consider particular cases.  To 
motivate several of these cases, recall that 
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sector 1 is more capital intensive than sector 2, then 
.0
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   Such a condition on the relative capital 

intensities of the two sectors is important because there 
are two effects at work in the two-sector analysis. 
 
The partial factor tax on capital in sector 1 induces a 
substitution effect away from capital in sector 1, and an 
output effect away from demand for good 1 and toward 
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demand for good 2.  Whether the output effect raises or 
lowers the demand for capital depends on the relative 
capital intensities of the two sectors, i.e., on .

LK
  

 
Case (i): 

1
 = 0 (No substitution effect): 

 
In this case (7) becomes 
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This means the denominator in (8) is positive.  Thus with 
LK1

 0  , implies that r declines.  Capital bears some 
of the tax. 
 
When 

LK
 , however, both the denominator and the 

numerator are positive, so r rises.  Capital shifts more than 
100% of the tax burden to labor. 
 
When 

LK
  = 0, or  = 0, then r  = 0.  Neither output 

nor substitution effects operate, so output prices rise and 
real returns to capital do not decline.  Capital and labor 
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bear the tax in proportion to their shares of national 
income. 
 
Case (ii):  = 0  (No output effect.) 
 
In this setting, equation (7) becomes: 
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This can be rewritten as 
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The numerator is negative and the denominator positive, 
so  = 0 implies that capital must bear some of the tax. 
 
Case (iii):  

2
  = 0 (No substitution in sector 2.) 

 
Now, equation (7) becomes: 
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If 
LK

  > 0, then K1/L1 must rise.  Further tedious 
algebra shows that  .dr 

 In this case, capital bears 
more than 100% of tax. 
 
Beyond Two Sectors: Computable General Equilibrium 
Models 
 

Moving beyond two-sector models makes it difficult to 
obtain analytic results.  Computable general equilibrium 
(CGE) models were developed to address precisely these 
concerns.  They were pioneered by John Shoven and John 
Whalley (1972 Journal of Public Economics) and have 
subsequently been a topic of voluminous research in 
public finance, trade, and development.  The most widely 
used public finance model is described by Charles 
Ballard, Don Fullerton, John Shoven, and John Whalley 
in A General Equilibrium Model for Tax Policy 
Evaluation, (1985).  The basic structure of this model is: 

Production:  

There are 19 different productive sectors with CES 
production functions for each sector:  

(11)    
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The model incorporates separate tax parameters and 
production parameters in each sector. 
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Consumers: 

There are 12 different classes of consumers, 
corresponding to different strata of the income 
distribution.  Each consumer has a CES utility function: 
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Government: 

The government has a Cobb-Douglas utility function.  
These preferences determine the composition of 
government spending.    

Key Assumptions: 

•   Uncompensated labor supply elasticity of 0 to 0.15. 
•   Interest elasticity of saving ranges from 0 and 0.40. 
•   Elasticities of substitution vary across sectors: 

   
  Agriculture    0.61 
  Food Products   0.71 
  Clothing     0.82 
  Paper     0.77 
  Petroleum Refining  0.74 
  Vehicle Manufacture  0.82 
 



 12 

Here is an illustration of the tax rate calibration for this 
model.  The statistics for capital, labor, and output taxes 
describe differences across industries (19 sectors): 

Capital Taxes:  Mean 0.970, Std Dev 0.729 

Labor Taxes:  Mean 0.101, Std Dev 0.009 

Output Taxes: Mean 0.008, Std Dev 0.035 

Excise Taxes (15 Goods): Mean 0.067, Std. Dev 0.140 
 
Note that there is substantial heterogeneity across sectors 
in tax rates in the U.S. in the early 1980s, notably those 
on capital income, as well as the variation in marginal 
deadweight burdens from different tax instruments. 
 

Key Findings: 

• Marginal deadweight losses are on the order of 35 
cents per dollar of revenue for the tax system as a whole. 
• Intersectoral variations in tax rates create important 
distortions. 
• Intertemporal distortions are more important than 
intersectoral ones.  This has motivated the great volume 
of research on the interest elasticity of saving, a key 
parameter in determining the inter-temporal distortion. 
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The table below indicates the marginal excess burden 
from raising extra revenue from specific portions of the 
tax system: 

 

Uncompensated Saving Elasticity: 0.0 0.4 0.0 0.4

Uncompensated Labor Supply Elasticity: 0.0 0.0 0.15 0.15

All Taxes .170 .206 .274 .332

Capital Taxes .181 .379 .217 .463

Labor Taxes .121 .112 .234 .230

Consumer Sales Taxes .256 .251 .384 .388

Sales Taxes on Commodities other than 
Alcohol, Tobacco, Gasoline .035 .026 .119 .115

Income Taxes .163 .179 .282 .314

Output Taxes .147 .163 .248 .279

Source: Charles Ballard, et.al., 1985, American Economic Review

Parameter Choices
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Appendix: Deriving (1′) from (1) 
 
The derivation of equation (1') above is somewhat more 
complicated than other parts of the derivation.  
Differentiating (1) yields: 
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which simplifies to 
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