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Preliminaries Introduction 

Foundations of Neoclassical Growth
 


Solow model: constant saving rate. 

More satisfactory to specify the preference orderings of individuals 
and derive their decisions from these preferences. 

Enables better understanding of the factors that affect savings 
decisions. 

Enables to discuss the “optimality” of equilibria 

Whether the (competitive) equilibria of growth models can be 
“improved upon”. 

Notion of improvement: Pareto optimality. 
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Preliminaries Preliminaries 

Preliminaries I
 


Consider an economy consisting of a unit measure of infinitely-lived 
households.
 


I.e., an uncountable number of households: e.g., the set of households
 

H could be represented by the unit interval [0, 1].
 


Emphasize that each household is infinitesimal and will have no effect 
on aggregates.
 


Can alternatively think of H as a countable set of the form
 

H = {1, 2, ..., M} with M = ∞, without any loss of generality.
 

Advantage of unit measure: averages and aggregates are the same 

Simpler to have H as a finite set in the form {1, 2, ..., M} with M 
large but finite. 

Acceptable for many models, but with overlapping generations require 
the set of households to be infinite. 
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Preliminaries Preliminaries 

Preliminaries II
 


How to model households in infinite horizon? 

“infinitely lived” or consisting of overlapping generations with full 
altruism linking generations infinite planning horizon →
overlapping generations finite planning horizon (generally...). →
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Preliminaries Preliminaries 

Time Separable Preferences
 

Standard assumptions on preference orderings so that they can be 
represented by utility functions. 

In particular, each household i has an instantaneous utility function 

ui (ci (t)) , 

ui : R+→ R is increasing and concave and ci (t) is the consumption 
of household i .


Note instantaneous utility function is not specifying a complete

preference ordering over all commodities– here consumption levels in

all dates.


Sometimes also referred to as the “felicity function”. 

Two major assumptions in writing an instantaneous utility function 

consumption externalities are ruled out.
 
overall utility is time separable.
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Preliminaries Infinite Horizon 

Infinite Planning Horizon
 

Start with the case of infinite planning horizon. 

Suppose households discount the future “exponentially”– or

“proportionally”.


Thus household preferences at time t = 0 are 

∞ 

Ei 
0 ∑ βti ui (ci (t)) , (1) 
t=0 

where βi ∈ (0, 1) is the discount factor of household i . 

Interpret ui ( ) as a “Bernoulli utility function”.·
Then preferences of household i at time t = 0 can be represented by 
the following von Neumann-Morgenstern expected utility function. 
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Preliminaries Infinite Horizon 

Heterogeneity and the Representative Household
 

Ei 
0 is the expectation operator with respect to the information set 

available to household i at time t = 0. 

So far index individual utility function, ui ( ), and the discount factor, ·
βi , by “i” 

Households could also differ according to their income processes.

E.g., effective labor endowments of {ei (t)} ∞ 

=0, labor income of
t∞ {ei (t) w (t)}t=0. 
But at this level of generality, this problem is not tractable. 

Follow the standard approach in macroeconomics and assume the 
existence of a representative household. 
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Preliminaries Infinite Horizon 

Time Consistency
 

Exponential discounting and time separability: ensure

“time-consistent”behavior.


A solution {x (t)} T 
=0 (possibly with T = ∞) is time consistent if:
t 

whenever {x (t)} T 
=0 is an optimal solution starting at time t = 0,t 

{x (t)} Tt=t is an optimal solution to the continuation dynamic 
optimization problem starting from time t = t � ∈ [0, T ]. 
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Representative Household Representative Household 

Challenges to the Representative Household
 

An economy admits a representative household if preference side can 
be represented as if a single household made the aggregate 
consumption and saving decisions subject to a single budget 
constraint. 

This description concerning a representative household is purely
 

positive
 


Stronger notion of “normative” representative household: if we can 
also use the utility function of the representative household for welfare 
comparisons. 

Simplest case that will lead to the existence of a representative
 

household: suppose each household is identical.
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Representative Household Representative Household 

Representative Household II 

I.e., same β, same sequence {e (t)}
 ∞ 
=0 and same t 

u (ci (t)) 

where u : R+→ R is increasing and concave and ci (t) is the 
consumption of household i . 

Again ignoring uncertainty, preference side can be represented as the 
solution to 

∞ 

max
∑ βtu (c (t)) , (2) 
t=0 

β ∈ (0, 1) is the common discount factor and c (t) the consumption
 

level of the representative household.
 


Admits a representative household rather trivially.
 


Representative household’s preferences, (2), can be used for positive
 

and normative analysis.
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Representative Household A Negative Result 

Representative Household III 

If instead households are not identical but assume can model as if 
demand side generated by the optimization decision of a 
representative household: 
More realistic, but:
 


The representative household will have positive, but not always a
 

normative meaning.
 

Models with heterogeneity: often not lead to behavior that can be
 

represented as if generated by a representative household.
 


Theorem	 (Debreu-Mantel-Sonnenschein Theorem) Let ε > 0 be a 
scalar and N < ∞ be a positive integer. Consider a set of �	 � 
prices Pε = p∈RN 

+: pj /pj � ≥ ε for all j and j � and any 
continuous function x : Pε → RN that satisfies Walras’Law + 
and is homogeneous of degree 0. Then there exists an 
exchange economy with N commodities and H < ∞ 
households, where the aggregate demand is given by x (p) 
over the set Pε. 
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Representative Household A Negative Result 

Representative Household IV 

That excess demands come from optimizing behavior of households 
puts no restrictions on the form of these demands. 

E.g., x (p) does not necessarily possess a negative-semi-definite 
Jacobian or satisfy the weak axiom of revealed preference 
(requirements of demands generated by individual households). 

Hence without imposing further structure, impossible to derive 
specific x (p)’s from the maximization behavior of a single household. 

Severe warning against the use of the representative household
 

assumption.
 


Partly an outcome of very strong income effects: 

special but approximately realistic preference functions, and restrictions 
on distribution of income rule out arbitrary aggregate excess demand 
functions. 
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Representative Household A Partial Positive Result 

Gorman Aggregation
 

Recall an indirect utility function for household i , vi p, y i , specifies 
(ordinal) utility as a function of the price vector p = (p1, ..., pN ) and 
household’s income y i . 
vi p, y i : homogeneous of degree 0 in p and y . 

Theorem	 (Gorman’s Aggregation Theorem) Consider an economy 
with a finite number N < ∞ of commodities and a set H of 
households. Suppose that the preferences of household i ∈ H
can be represented by an indirect utility function of the form 

v i p, y	i	 = ai (p) + b (p) y i , (3) 

then these preferences can be aggregated and represented by 
those of a representative household, with indirect utility 

v (p, y ) = ai (p) di + b (p) y , � i ∈H 

where y ≡ y i di is aggregate income. i ∈H 
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Representative Household A Partial Positive Result 

Linear Engel Curves 

Demand for good j (from Roy’s identity): 

� � 1 ∂ai (p) 1 ∂b (p)i i ixj p, y = − 
b (p) ∂pj 

− 
b (p) ∂pj 

y . 

Thus linear Engel curves. 
“Indispensable” for the existence of a representative household. 
Let us say that there exists a strong representative household if 
redistribution of income or endowments across households does not 
affect the demand side. 
Gorman preferences are suffi cient for a strong representative 
household. 
Moreover, they are also necessary (with the same b (p) for all 
households) for the economy to admit a strong representative 
household. 

The proof is easy by a simple variation argument. 
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Representative Household A Partial Positive Result 

Importance of Gorman Preferences 

Gorman Preferences limit the extent of income effects and enables

the aggregation of individual behavior.


Integral is “Lebesgue integral,” so when H is a finite or countable set,


i ∈H y
i di is indeed equivalent to the summation ∑i ∈H y

i . 

Stated for an economy with a finite number of commodities, but can

be generalized for infinite or even a continuum of commodities.


Note all we require is there exists a monotonic transformation of the

indirect utility function that takes the form in (3)– as long as no

uncertainty.


Contains some commonly-used preferences in macroeconomics.
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Representative Household A Partial Positive Result 

Example: Constant Elasticity of Substitution Preferences
 


A very common class of preferences: constant elasticity of
 

substitution (CES) preferences or Dixit-Stiglitz preferences.
 


Suppose each household denoted by i ∈ H has total income y i and

preferences defined over j = 1, ..., N goods
�	 � σ � �	 N � � σ−1 σ−1 

Ui x1
i , ..., xN

i =	 	 ∑ xji − ξ ij 
σ 

, (4) 
j =1 

σ ∈ (0, ∞) and ξ ij ∈ [−ξ ¯ , ξ̄] is a household specific term, which
 

parameterizes whether the particular good is a necessity for the
 

household.
 


For example, ξ ij > 0 may mean that household i needs to consume a

certain amount of good j to survive.
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Representative Household A Partial Positive Result 

Example II 

If we define the level of consumption of each good as x̂ i = xj
i − ξ ij ,j 

the elasticity of substitution between any two x̂j
i and x̂j

i 
� would be 

equal to σ. 

Each consumer faces a vector of prices p= (p1, ..., pN ), and we

assume that for all i ,


N 

∑ pj ξ ¯ < y i , 
j =1 

Thus household can afford a bundle such that x̂j
i ≥ 0 for all j . 

The indirect utility function is given by 

� � − ∑N
j =1 pj ξ

i
j + y i 

v i p,y i = � � 1 , (5) 

∑N
j =1 pj 

1−σ 1−σ 
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Representative Household A Partial Positive Result 

Example III
 

Satisfies the Gorman form (and is also homogeneous of degree 0 in p 
and y). 
Therefore, this economy admits a representative household with
 
indirect utility:
 �	 � 

− ∑N
j =1 pj ξ j + y 

v (p,y ) = � � 1 
∑N
j =1 pj 

1−σ 1−σ �	 	 � 
y is aggregate income given by y ≡ y i di and ξ j ≡ ξ ij di .i ∈H	 i ∈H
The utility function leading to this indirect utility function is �	 � σ 

N � � σ−1 σ−1 

U (x1, ..., xN ) =	 	 ∑ xj − ξ j σ . (6) 
j =1 

Preferences closely related to CES preferences will be key in ensuring 
balanced growth in neoclassical growth models. 
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Representative Household Normative Representative Household 

Normative Representative Household
 

Gorman preferences also imply the existence of a normative
 

representative household.
 


Recall an allocation is Pareto optimal if no household can be made 
strictly better-off without some other household being made worse-off. 
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Representative Household Normative Representative Household 

Existence of Normative Representative Household
 

Theorem	 (Existence of a Normative Representative Household) 
Consider an economy with a finite number N < ∞ of 
commodities, a set H of households and a convex aggregate 
production possibilities set Y .. Suppose that the preferences 
of each household i ∈ H take the Gorman form, 
v	i p, y i	 = ai (p) + b (p) y i . 

Then any allocation that maximizes the utility of the

representative household,

v (p, y ) = ∑i ∈H a

i (p) + b (p) y , with y ≡ ∑i ∈H y
i , is


Pareto optimal.

Moreover, if ai (p) = ai for all p and all i ∈ H, then

any Pareto optimal allocation maximizes the utility of

the representative household.
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Representative Household Normative Representative Household 

Proof of Theorem I


Represent a Pareto optimal allocation as: � �
 � �
 
max
 ∑
αi v i p, y
i =
 ∑
αi a
i (p) + b (p) y i 

{pj },{y i },{zj } i ∈H i ∈H 

subject to � � 
1
 −


b (p)
 
∂ai (p)

∑
 ∂pji ∈H 

+
 
∂b (p)
 

y
∂pj 

=
 zj ∈ Yj (p) for j = 1, ..., N 

N 

y i∑
 
i ∈H 

= y ≡ ∑
pj zj 
j =1 

N 

∑ pj ωj = y , 
j =1 

pj ≥ 0 for all j . 
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Representative Household Normative Representative Household 

Proof of Theorem II
 


Here αi are nonnegative Pareto weights with ∑i ∈H α
i = 1 and i ∈H 

zj ∈ Yj (p) profit maximizing production of good j . 

First set of constraints use Roy’s identity to express total demand for 
good j and set it equal to supply, ωj . 

Second equation sets value of income to production. 

Third equation makes sure total income is equal to the value of the 
endowments. 

Compare the above maximization problem to: 

max ∑ ai (p) + b (p) y 
i ∈H 

subject to the same set of constraints. 

The only difference is in the latter each household has been assigned 
the same weight. 
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Representative Household Normative Representative Household 

Proof of Theorem III 
Let (p∗, y ∗) be a solution to the second problem. 

By definition it is also a solution to the first problem with αi = α, and

therefore it is Pareto optimal.


This establishes the first part of the theorem.


To establish the second part, suppose that ai (p) = ai for all p and all

i ∈ H. 
To obtain a contradiction, let y ∈R|H| and suppose that (p∗∗ , y∗∗ ) is� � α α 
a solution to the first problem for some weights αi and suppose i ∈H 
that it is not a solution to the second problem.


Let
 

αM = max αi
 

i ∈H 

and 
HM = {i ∈ H |αi = αM } 

be the set of households given the maximum Pareto weight. 
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Representative Household Normative Representative Household 

Proof of Theorem IV
 


Let (p∗, y ∗) be a solution to the second problem such that
 

y i = 0 for all i / (7)
∈ H. 

Such a solution exists since objective function and constraint set in 
the second problem depend only on the vector (y1 , .., y |H|) through 
y y .= ∑i ∈H 

i
 

Since, by definition, (pα
∗∗ , yα

∗∗
) is in the constraint set of the second 
problem and is not a solution, 

∑ ai + b (p∗) y ∗ > ∑ ai + b (pα 
∗∗ ) yα 

∗∗ (8) 
i ∈H i ∈H 

b (p∗) y ∗ > b (pα 
∗∗ ) yα 

∗∗ . 
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Representative Household Normative Representative Household 

Proof of Theorem V 

The hypothesis that it is a solution to the first problem also implies 

∑ αi ai + ∑ αi b (pα 
∗∗ ) (yα 

∗∗ )i ≥ ∑ αi ai + ∑ αi b (p∗) (y ∗)i 

i ∈H i ∈H i ∈H i ∈H 

∑ αi b (pα 
∗∗ ) (yα 

∗∗ )i ≥ ∑ αi b (p∗) (y ∗)i . (9) 
i ∈H i ∈H 

Then, it can be seen that the solution (p∗∗ , y ∗∗) to the Pareto 
optimal allocation problem satisfies y i = 0 for any i / M .∈ H
In view of this and the choice of (p∗, y ∗) in (7), equation (9) implies 

αMb (pα 
∗∗ ) ∑ (yα 

∗∗ )i ≥ αMb (p∗) ∑ (y ∗)i 
i ∈H i ∈H 

b (pα 
∗∗ ) (yα 

∗∗ ) ≥ b (p∗) (y ∗) , 

Contradicts equation (8): hence under the stated assumptions, any 
Pareto optimal allocation maximizes the utility of the representative 
household. 

Daron Acemoglu (MIT) Economic Growth Lecture 4 November 5, 2009. 25 / 79 



1

2

Infinite Planning Horizon Infinite Horizon 

Infinite Planning Horizon I 

Most growth and macro models assume that individuals have an 
infinite-planning horizon 

Two reasonable microfoundations for this assumption 

First: “Poisson death model” or the perpetual youth model: 
individuals are finitely-lived, but not aware of when they will die. 

Strong simplifying assumption: likelihood of survival to the next age in 
reality is not a constant 
But a good starting point, tractable and implies expected lifespan of 
1/ν < ∞ periods, can be used to get a sense value of ν. 

Suppose each individual has a standard instantaneous utility function 
u : R+ → R, and a “true” or “pure” discount factor β̂ 

Normalize u (0) = 0 to be the utility of death. 

Consider an individual who plans to have a consumption sequence
{c (t)}t 

∞ 
=0 (conditional on living). 
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Infinite Planning Horizon Infinite Horizon 

Infinite Planning Horizon II 

Individual would have an expected utility at time t = 0 given by 

U (0) = u (c (0)) + β̂ (1 − ν) u (c (0)) + β̂νu (0) 

+β̂ 2 2 u (c (1)) + β̂ 2 (1 − ν)
 (1 − ν) νu (0) + ...

∞

∑
� �t 

β̂ (1 − ν) u (c (t)) =
 

t=0 
∞

∑=
 
 βtu (c (t)) , (10) 
t=0 

Second line collects terms and uses u (0) = 0, third line defines
 

β ≡ β̂ (1 − ν) as “effective discount factor.”
 

Isomorphic to model of infinitely-lived individuals, but values of β may 
differ. 
Also equation (10) is already the expected utility; probabilities have 
been substituted. 
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Infinite Planning Horizon Infinite Horizon 

Infinite Planning Horizon III 

Second: intergenerational altruism or from the “bequest” motive. 
Imagine an individual who lives for one period and has a single 
offspring (who will also live for a single period and beget a single 
offspring etc.). 
Individual not only derives utility from his consumption but also from 
the bequest he leaves to his offspring. 
For example, utility of an individual living at time t is given by 

u (c (t)) + Ub (b (t)) , 

c (t) is his consumption and b (t) denotes the bequest left to his 
offspring. 
For concreteness, suppose that the individual has total income y (t), 
so that his budget constraint is 

c (t) + b (t) ≤ y (t) . 
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Infinite Planning Horizon Infinite Horizon 

Infinite Planning Horizon IV
 

Ub ( ): how much the individual values bequests left to his offspring. ·
Benchmark might be “purely altruistic:” cares about the utility of his 
offspring (with some discount factor). 

Let discount factor between generations be β. 

Assume offspring will have an income of w without the bequest. 

Then the utility of the individual can be written as 

u (c (t)) + βV (b (t) + w ) , 

V ( ): continuation value, the utility that the offspring will obtain ·
from receiving a bequest of b (t) (plus his own w).


Value of the individual at time t can in turn be written as


V (y (t)) = max {u (c (t)) + βV (b (t) + w (t + 1))} , 
c (t)+b(t)≤y (t) 
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Infinite Planning Horizon Infinite Horizon 

Infinite Planning Horizon V
 

Canonical form of a dynamic programming representation of an
 

infinite-horizon maximization problem.
 


Under some mild technical assumptions, this dynamic programming 
representation is equivalent to maximizing 

∞ 

∑ βsu (ct+s ) 
s=0 

at time t. 

Each individual internalizes utility of all future members of the
 

“dynasty”.
 


Fully altruistic behavior within a dynasty (“dynastic” preferences) will 
also lead to infinite planning horizon. 
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Representative Firm Representative Firm 

The Representative Firm I
 

While not all economies would admit a representative household,
 
standard assumptions (in particular no production externalities and
 
competitive markets) are suffi cient to ensure a representative firm.
 

Theorem	 (The Representative Firm Theorem) Consider a 
competitive production economy with N ∈ N∪ {+∞}
commodities and a countable set F of firms, each with a 
convex production possibilities set Y f ⊂ RN . Let p ∈ RN 

+ be 
the price vector in this economy and denote the set of profit 
maximizing net supplies of firm f ∈ F by Ŷ f (p) ⊂ Y f (so 
that for any ŷ f	 ∈ Ŷ f (p), we have p ŷ f ≥ p y f for all · · 
y f ∈ Y f ). Then there exists a representative firm with 
production possibilities set Y ⊂ RN and set of profit 
maximizing net supplies Ŷ (p) such that for any p ∈ RN 

+, 
ŷ ∈ Ŷ (p) if and only if ŷ (p) = ∑f ∈F ŷ

f for some 
ŷ f ∈ Ŷ f (p) for each f ∈ F . 
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Representative Firm Representative Firm 

Proof of Theorem: The Representative Firm I 

Let Y be defined as follows: 

Y = ∑ y f : y f ∈ Y f for each f ∈ F . 
f ∈F 

To prove the “if” part of the theorem, fix p ∈ RN and construct + 
ŷ = ∑f ∈F ŷ f for some ŷ f ∈ Ŷ f (p) for each f ∈ F .

Suppose, to obtain a contradiction, that ŷ ∈/ Ŷ (p), so that there

exists y � such that p y � > p ŷ .
· · 
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Representative Firm Representative Firm 

Proof of Theorem: The Representative Firm II 

By definition of the set Y , this implies that there exists y f


with y f ∈ Y f such that 
f ∈F


p ∑ y f > p ∑ ŷ f · · 
f ∈F f ∈F 

∑ p y f > ∑ p ŷ f ,· · 
f ∈F f ∈F


so that there exists at least one f � ∈ F such that


p y f 
� 
> p ŷ f 

� 
,· · 

Contradicts the hypothesis that ŷ f ∈ Ŷ f (p) for each f ∈ F and

completes this part of the proof.


To prove the “only if” part of the theorem, let ŷ ∈ Ŷ (p) be a profit 
maximizing choice for the representative firm. 
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Representative Firm Representative Firm 

Proof of Theorem: The Representative Firm III 

Then, since Ŷ (p) ⊂ Y , we have that
 


ŷ = ∑ y f
 

f ∈F
 


for some y f
 ∈ Y f for each f ∈ F .


Let ŷ f ∈ Ŷ f (p). Then,
 


∑ p y f ≤ ∑ p ŷ f
 ,
· · 
f ∈F f ∈F 

which implies that 
p ŷ ≤ p ∑ ŷ f . (11)· · 

f ∈F 
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Representative Firm Representative Firm 

Proof of Theorem: The Representative Firm IV 

Since, by hypothesis, ∑f ∈F ŷ f ∈ Y and ŷ ∈ Ŷ (p), we also have 

p ŷ ≥ p ∑ ŷ f .· · 
f ∈F 

Therefore, inequality (11) must hold with equality, so that 

p y f = p ŷ f ,· · 

for each f ∈ F , and thus y f ∈ Ŷ f (p). This completes the proof of 
the theorem. 
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Representative Firm Representative Firm 

The Representative Firm II 

Why such a difference between representative household and
 

representative firm assumptions? Income effects.
 


Changes in prices create income effects, which affect different 
households differently. 

No income effects in producer theory, so the representative firm 
assumption is without loss of any generality. 

Does not mean that heterogeneity among firms is uninteresting or 
unimportant. 

Many models of endogenous technology feature productivity 
differences across firms, and firms’attempts to increase their 
productivity relative to others will often be an engine of economic 
growth. 
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Optimal Growth Problem Formulation 

Problem Formulation I
 


Discrete time infinite-horizon economy and suppose that the economy 
admits a representative household. 

Once again ignoring uncertainty, the representative household has the 
t = 0 objective function 

∞

∑ βtu (c (t)) , (12) 
t=0 

with a discount factor of β ∈ (0, 1). 

In continuous time, this utility function of the representative
 
household becomes
 

∞ 
dt( ) ( ( )) t tρexp u c− (13)


0 

where ρ > 0 is now the discount rate of the individuals.
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Optimal Growth Problem Formulation 

Problem Formulation II
 


Where does the exponential form of the discounting in (13) come 
from? 
Calculate the value of $1 in T periods, and divide the interval [0, T ] 
into T /Δt equally-sized subintervals. 
Let the interest rate in each subinterval be equal to Δt r .· 
Key: r is multiplied by Δt, otherwise as we vary Δt, we would be 
changing the interest rate. 
Using the standard compound interest rate formula, the value of $1 in 
T periods at this interest rate is 

v (T | Δt) ≡ (1 + Δt · r )T /Δt . 

Now we want to take the continuous time limit by letting Δt 0,→ 

lim v (T lim (1 + Δt r)T /Δt .v (T ) ≡ 
Δt 0 

| Δt) ≡ 
Δt 0 

· 
→ →
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Optimal Growth Problem Formulation 

Problem Formulation III 

Thus 

v (T ) exp lim ln (1 + Δt r )T /Δt ≡ 
Δt 0 

· � 
→ � 

T 
= exp lim ln (1 + Δt r ) . 

Δt 0 Δt 
· 

→

The term in square brackets has a limit on the form 0/0.

Write this as and use L’Hospital’s rule:
 


ln (1 + Δt r ) r / (1 + Δt r )

lim 

· 
= lim 

· 
= rT ,

Δt 0 Δt/T Δt 0 1/T→ →

Therefore,
 
v (T ) = exp (rT ) .
 

Conversely, $1 in T periods from now, is worth exp (−rT ) today. 
Same reasoning applies to utility: utility from c (t) in t evaluated at 
time 0 is exp (−ρt) u (c (t)), where ρ is (subjective) discount rate. 
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Welfare Theorems Towards Equilibrium 

Welfare Theorems I
 


There should be a close connection between Pareto optima and
 
competitive equilibria.
 


Start with models that have a finite number of consumers, so H is

finite.


However, allow an infinite number of commodities.


Results here have analogs for economies with a continuum of
 

commodities, but focus on countable number of commodities.

� �∞ 
Let commodities be indexed by j ∈ N and xi ≡ xi 

j =0 
be the j� �∞ 

consumption bundle of household i , and ωi ≡ ωj
i 
j =0 

be its 

endowment bundle. 

Assume feasible xi ’s must belong to some consumption set X i ⊂ R∞ 
+ . 

Most relevant interpretation for us is that at each date j = 0, 1, ..., 
each individual consumes a finite dimensional vector of products. 
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Welfare Theorems Towards Equilibrium 

Welfare Theorems II
 


Thus xj
i ∈ Xj

i ⊂ RK 
+ for some integer K . 

Consumption set introduced to allow cases where individual may not

have negative consumption of certain commodities.


Let X ≡ ∏i ∈H X
i be the Cartesian product of these consumption


sets, the aggregate consumption set of the economy. 

Also use the notation x ≡ xi and ω ≡ ωi to describe the i ∈H i ∈H
entire consumption allocation and endowments in the economy.


Feasibility requires that x ∈ X.

Each household in H has a well defined preference ordering over
 

consumption bundles.
 


This preference ordering can be represented by a relationship �i for

household i , such that x � �i x implies that household i weakly prefers

x� to x.
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Welfare Theorems Towards Equilibrium 

Welfare Theorems III
 


Suppose that preferences can be represented by ui : X i R, such 
that whenever x � �i x , we have ui (x �) ≥ ui (x). 

→ 

The domain of this function is X i ⊂ R∞ 
+ . 

Let u ≡ ui be the set of utility functions. i ∈H
Production side: finite number of firms represented by F 

Each firm f ∈ F is characterized by production set Y f , specifies 
levels of output firm f can produce from specified levels of inputs. � �∞ 
I.e., y f ≡ yj

f 
j =0 

is a feasible production plan for firm f if y f ∈ Y f . 

E.g., if there were only labor and a final good, Y f would include pairs 
(−l , y ) such that with labor input l the firm can produce at most y . 
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Welfare Theorems Towards Equilibrium 

Welfare Theorems IV
 


Take each Y f to be a cone, so that if y ∈ Y f , then λy ∈ Y f for any 
λ ∈ R+. This implies: 

0 ∈ Y f for each f ∈ F ;

each Y f exhibits constant returns to scale.


If there are diminishing returns to scale from some scarce factors, this 
is added as an additional factor of production and Y f is still a cone. 
Let Y Y f represent the aggregate production set and
� 

y 
≡
f 
�∏f ∈F 

such that y f ∈ Y f
 for all f , or equivalently, y ∈ Y.
y ≡ f ∈F

Ownership structure of firms: if firms make profits, they should be

distributed to some agents

Assume there exists a sequence of numbers (profit shares) 

θ ≡ θi such that θi ≥ 0 for all f and i , and ∑i ∈H θ
i = 1f f f

f ∈F ,i ∈H 
for all f ∈ F . 
θif is the share of profits of firm f that will accrue to household i . 
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Welfare Theorems Towards Equilibrium 

Welfare Theorems V
 


An economy E is described by E ≡ (H, F , u, ω, Y, X, θ).
 
An allocation is (x, y) such that x and y are feasible, that is, x ∈ X,
 
y ∈ Y, and ∑i ∈H xj

i ≤ ∑i ∈H ω
i
j + ∑f ∈F yj

f for all j ∈ N. 

A price system is a sequence p≡{pj } ∞ , such that pj ≥ 0 for all j .j =0 

We can choose one of these prices as the numeraire and normalize it

to 1.
 


Also define p x as the inner product of p and x , i.e.,
 

x ≡ ∑∞
 

· 
p · j =0 pj xj . 
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Welfare Theorems Towards Equilibrium 

Welfare Theorems VI 

Definition	 A competitive equilibrium for the economy

E ≡ (H, F , u, ω, Y, X, θ) is given by an allocation
�	 � � � � � 
x∗ = xi ∗ , y∗ = y f ∗ and a price system p∗ i ∈H f ∈F 
such that 

The allocation (x∗, y∗) is feasible, i.e., xi ∗ ∈ X i for all 
i ∈ H, y f ∗ ∈ Y f for all f ∈ F and 

∑ xji ∗ ≤ ∑ ωi
j + ∑ yjf ∗ for all j ∈ N. 

i ∈H i ∈H f ∈F 

For every firm f ∈ F , y f ∗ maximizes profits, i.e., 

p∗ y f ∗	 ≥ p∗ y for all y ∈ Y f .· · 

For every consumer i ∈ H, xi ∗ maximizes utility, i.e., 

ui xi ∗	 ≥ ui (x) for all x s.t. x ∈ X i and p∗ x ≤ p∗ xi ∗ .· · 
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Welfare Theorems Towards Equilibrium 

Welfare Theorems VII
 


Establish existence of competitive equilibrium with finite number of 
commodities and standard convexity assumptions is straightforward. 

With infinite number of commodities, somewhat more diffi cult and 
requires more sophisticated arguments. 

Definition	 A feasible allocation (x, y) for economy 
E ≡ (H, F , u, ω, Y, X, θ) is Pareto optimal if there exists no 
other feasible allocation (̂x, ŷ) such that x̂ i ∈ X i , ŷ f ∈ Y f 

for all f ∈ F , 

∑ x̂ji ≤ ∑ ωi
j + ∑ ŷjf for all j ∈ N, 

i ∈H i ∈H f ∈F 

and 
ui x̂ i ≥ ui xi for all i ∈ H 

with at least one strict inequality.
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Welfare Theorems Towards Equilibrium 

Welfare Theorems VIII
 


Definition	 Household i ∈ H is locally non-satiated if at each xi , ui xi 

is strictly increasing in at least one of its arguments at xi 

and ui xi < ∞. 

Latter requirement already implied by the fact that ui : X i R.→ 

Theorem	 (First Welfare Theorem I) Suppose that (x∗, y∗, p∗) is a
 
competitive equilibrium of economy
 
E ≡ (H, F , u, ω, Y, X, θ) with H finite. Assume that all
 
households are locally non-satiated. Then (x∗, y∗) is Pareto 
optimal. 
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Welfare Theorems Towards Equilibrium 

Proof of First Welfare Theorem I
 


To obtain a contradiction, suppose that there exists a feasible (̂x, ŷ) 
such that ui x̂ i ≥ ui xi for all i ∈ H and ui x̂ i > ui xi for all 
i ∈ H�, where H� is a non-empty subset of H. 
Since (x∗, y∗, p∗) is a competitive equilibrium, it must be the case 
that for all i ∈ H, 

p∗·x̂ i ≥ p∗ · x � 
i ∗ � 

(14) 

= p∗ ωi + ∑ θf
i y f ∗ · 

f ∈F


and for all i ∈ H�,


p∗ x̂ i > p∗ ωi + ∑ θf
i y f ∗ . (15)· · 

f ∈F 
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Welfare Theorems Towards Equilibrium 

Proof of First Welfare Theorem II
 


Second inequality follows immediately in view of the fact that xi ∗ is 
the utility maximizing choice for household i , thus if x̂ i is strictly 
preferred, then it cannot be in the budget set. 

First inequality follows with a similar reasoning. Suppose that it did 
not hold. 

Then by the hypothesis of local-satiation, ui must be strictly
 

increasing in at least one of its arguments, let us say the j �th
 

component of x .
 


Then construct x̂ i (ε) such that x̂j
i (ε) = x̂j

i and x̂j
i (ε) = x̂j

i + ε. 

For ε 0, x̂ i (ε) is in household i’s budget set and yields strictly ↓
greater utility than the original consumption bundle xi , contradicting 
the hypothesis that household i was maximizing utility. 

Note local non-satiation implies that ui xi < ∞, and thus the
 

right-hand sides of (14) and (15) are finite.
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Welfare Theorems Towards Equilibrium 

Proof of First Welfare Theorem III 

Now summing over (14) and (15), we have 

p∗· ∑ x̂ i > p∗ · ∑ ωi + ∑ θf
i y f ∗ , (16) 

i ∈H i�∈H f ∈F � 

= p∗ ∑ ωi + ∑ y f ∗ ,· 
i ∈H f ∈F 

Second line uses the fact that the summations are finite, can change 
the order of summation, and that by definition of shares ∑i ∈H θ

i = 1f 
for all f . 

Finally, since y∗ is profit-maximizing at prices p∗, we have that 

p∗ · ∑ y f ∗ ≥ p∗ · ∑ y f for any y f with y f ∈ Y f for all f ∈ F 
f ∈F f ∈F f ∈F 

(17) 
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Welfare Theorems Towards Equilibrium 

Proof of First Welfare Theorem IV
 


However, by feasibility of x̂ i (Definition above, part 1), we have


∑ x̂ji ≤ ∑ ωi
j + ∑ ŷjf ,


i ∈H i ∈H f ∈F 

Therefore, by multiplying both sides by p∗ and exploiting (17), �	 � 

p∗ · ∑ x̂ji ≤ p∗ · ∑ ωj
i + ∑ ŷjf 

i ∈H �	 
i ∈H f ∈F � 

≤ p∗	 ·	 ∑ ωj
i + ∑ yjf ∗ , 

i ∈H f ∈F 

Contradicts (16), establishing that any competitive equilibrium

allocation (x∗, y∗) is Pareto optimal.
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Welfare Theorems Towards Equilibrium 

Welfare Theorems IX
 


Proof of the First Welfare Theorem based on two intuitive ideas. 

If another allocation Pareto dominates the competitive equilibrium, 
then it must be non-affordable in the competitive equilibrium. 
Profit-maximization implies that any competitive equilibrium already 
contains the maximal set of affordable allocations. 

Note it makes no convexity assumption. 

Also highlights the importance of the feature that the relevant sums 
exist and are finite. 

Otherwise, the last step would lead to the conclusion that “∞ < ∞”. 

That these sums exist followed from two assumptions: finiteness of 
the number of individuals and non-satiation. 
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Welfare Theorems Towards Equilibrium 

Welfare Theorems X
 


Theorem	 (First Welfare Theorem II) Suppose that (x∗, y∗, p∗) is a 
competitive equilibrium of the economy 
E ≡ (H, F , u, ω, Y, X, θ) with H countably infinite. Assume 
that all households are locally non-satiated and that 
p∗	 · ω∗ = ∑i ∈H ∑j 

∞ 
=0 pj

∗ωi
j < ∞. Then (x∗, y∗, p∗) is Pareto 

optimal. 

Proof: 

Same as before but now local non-satiation does not guarantee

summations are finite (16), since we sum over an infinite number of

households.

But since endowments are finite, the assumption that

∑i ∈H ∑

∞ 
=0 pj

∗ωj
i < ∞ ensures that the sums in (16) are indeed finite.
j 
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Welfare Theorems Towards Equilibrium 

Welfare Theorems X
 


Second Welfare Theorem (converse to First): whether or not H is 
finite is not as important as for the First Welfare Theorem. 

But requires assumptions such as the convexity of consumption and 
production sets and preferences, and additional requirements because 
it contains an “existence of equilibrium argument”. 

Recall that the consumption set of each individual i ∈ H is X i ⊂ R∞ 
+ . 

A typical element of X i is xi = x1
i , x2

i , ... , where xt
i can be


interpreted as the vector of consumption of individual i at time t.


Similarly, a typical element of the production set of firm f ∈ F , Y f , 
is y f = y1 

f , y2 
f , ... . 

Let us define xi [T ] = x0
i , x1

i , x2
i , ..., xT

i , 0, 0, ... and 
y f [T ] = y0 

f , y1 
f , y2 

f , ..., yT
f , 0, 0, ... . 

It can be verified that limT ∞ xi [T ] = xi and limT ∞ y f [T ] = y f


in the product topology. 
→ →
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Welfare Theorems Towards Equilibrium 

Second Welfare Theorem I
 


Theorem 

Consider a Pareto optimal allocation (x∗∗, y∗∗) in an economy described 
by ω, 

� 
Y f 
� 
f ∈F , 

� 
X i 
� 
i ∈H, and 

� 
ui (·) 

� 
i ∈H . Suppose all production and 

consumption sets are convex, all production sets are cones, and all� 
ui (·) 

� 
i ∈H are continuous and quasi-concave and satisfy local 

non-satiation. Suppose also that 0 ∈ X i , that for each x , x � ∈ X i with 
ui (x) > ui (x �) for all i ∈ H, there exists T̄ such that ui (x [T ]) > ui (x �) 
for all T ≥ T̄ and for all i ∈ H, and that for each y ∈ Y f , there exists T̃ 
such that y [T ] ∈ Y f for all T ≥ T̃ and for all f ∈ F .Then this allocation 
can be decentralized as a competitive equilibrium. 
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Welfare Theorems Towards Equilibrium 

Second Welfare Theorem II
 


Theorem 

(continued) In particular, there exist p∗∗ and (ω∗∗, θ∗∗) such that 

ω∗∗ satisfies ω = ∑i ∈H ω
i ∗∗; 

for all f ∈ F , 

p∗∗ · y f ∗∗ ≤ p∗∗ · y for all y ∈ Y f ; 

for all i ∈ H, 

if xi ∈ X i involves ui 
� 
xi 
� 
> ui 

� 
xi ∗∗ 

� 
, then p∗∗ · xi ≥ p∗∗ · wi ∗∗ , 

where wi ∗∗ ≡ ωi ∗∗ + ∑f ∈F θ
i ∗∗
f y

f ∗∗. 

Moreover, if p∗∗ · w∗∗ > 0 [i.e., p∗∗ · wi ∗∗ > 0 for each i ∈ H], then 
economy E has a competitive equilibrium (x∗∗, y∗∗,p∗∗). 
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Welfare Theorems Towards Equilibrium 

Welfare Theorems XII 

Notice: 

if instead if we had a finite commodity space, say with K commodities, 
then the hypothesis that 0 ∈ X i for each i ∈ H and x , x � ∈ X i with 
ui (x) > ui (x �), there exists T̄ such that ui (x [T ]) > ui (x � [T ]) for 
all T ≥ T̄ and all i ∈ H (and also that there exists T̃ such that if 
y ∈ Y f , then y [T ] ∈ Y f for all T ≥ T̃ and all f ∈ F ) would be 
satisfied automatically, by taking T̄ =
T̃ = K . 
Condition not imposed in Second Welfare Theorem in economies with a 
finite number of commodities. 
In dynamic economies, its role is changes in allocations at very far in 
the future should not have a large effect. 

The conditions for the Second Welfare Theorem are more diffi cult to 
satisfy than those for the First. 

Also the more important of the two theorems: stronger results that 
any Pareto optimal allocation can be decentralized. 
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Welfare Theorems Towards Equilibrium 

Welfare Theorems XIII
 


Immediate corollary is an existence result: a competitive equilibrium 
must exist. 

Motivates many to look for the set of Pareto optimal allocations
 

instead of explicitly characterizing competitive equilibria.
 


Real power of the Theorem in dynamic macro models comes when we 
combine it with models that admit a representative household. 

Enables us to characterize the optimal growth allocation that 
maximizes the utility of the representative household and assert that 
this will correspond to a competitive equilibrium. 
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Welfare Theorems Sketch of the Proof 

Sketch of the Proof of SWT I
 


First, I establish that there exists a price vector p∗∗ and an

endowment and share allocation (ω∗∗, θ∗∗) that satisfy conditions

1-3.


This has two parts.


(Part 1) This part follows from the Geometric Hahn-Banach Theorem.


Define the “more preferred” sets for each i ∈ H:
� � � � �� 
Pi = xi ∈ X i :ui xi > ui xi ∗∗ . 

Clearly, each Pi is convex.


Let P = ∑i ∈H P
i and Y � = ∑f ∈F Y

f + {ω}, where recall that

ω = ∑i ∈H ω

i ∗∗, so that Y � is the sum of the production sets shifted

by the endowment vector.


Both P and Y � are convex (since each Pi and each Y f are convex).
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Welfare Theorems Sketch of the Proof 

Sketch of the Proof of SWT II
 


Consider the sequences of production plans for each firm to be subsets 
of �K 

∞, i.e., vectors of the form y f = y0 
f , y1 

f , ... , with each y f ∈ RK 
+.j 

Moreover, since each production set is a cone, Y � = ∑f ∈F Y
f + {ω}


has an interior point.


Moreover, let x∗∗ = ∑i ∈H x
i ∗∗ .


By feasibility and local non-satiation, x∗∗ = ∑f ∈F y
i ∗∗ + ω.


Then x∗∗ ∈ Y � and also x∗∗ ∈ P (where P is the closure of P). 

Next, observe that P ∩ Y � = ∅. Otherwise, there would exist ỹ ∈ Y �,

which is also in P.


This implies that if distributed appropriately across the households, ỹ 

would make all households equally well off and at least one of them

would be strictly better off
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Welfare Theorems Sketch of the Proof 

Sketch of the Proof of SWT III
 


I.e., by the definition of the set P, there would exist x̃ i such 
i i 

� 
i 
� 

i 
� � i ∈H


that ∑i ∈H x̃ = ỹ , x̃ i ∈ X i , and u x̃ ≥ u xi ∗∗ for all i ∈ H

with at least one strict inequality. 

This would contradict the hypothesis that (x∗∗ , y ∗∗) is a Pareto
 

optimum.
 


Since Y � has an interior point, P and Y � are convex, and 
P ∩ Y � = ∅, Geometric Theorem implies that there exists a nonzero 
continuous linear functional φ such that 

φ (y ) ≤ φ (x∗∗) ≤ φ (x) for all y ∈ Y � and all x ∈ P. (18) 

(Part 2) We next need to show that this linear functional can be 
interpreted as a price vector (i.e., that it does have an inner product 
representation). 
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Welfare Theorems Sketch of the Proof 

Sketch of the Proof of SWT IV


To do this, first note that if φ (x) is a continuous linear functional,

then
 φ̄ (x) = ∑j 

∞ φ̄ 
j (xj ) is also a linear functional, where each
=0


φ̄ 
j (xj ) is a linear functional on Xj ⊂ RK 

+.


Moreover,
 φ̄ (x) = limT ∞ φ (x [T ]).
→

Second claim follows from the fact that φ (x [T ]) is bounded above 
by �φ� · �x�, where �φ� denotes the norm of the functional φ and is 
thus finite. 

Clearly, �x� is also finite.

Moreover, since each element of x is nonnegative, {φ (x [t])} is a

monotone sequence, thus limT ∞ φ (x [T ]) converges and we denote 
the limit by
 φ̄ (x). 

→

Moreover, this limit is a bounded functional and therefore from
 
Continuity of Linear Function Theorem, it is continuous.
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Welfare Theorems Sketch of the Proof 

Sketch of the Proof of SWT V
 


The first claim follows from the fact that since xj ∈ Xj ⊂ RK 
+, we can 

define a continuous linear functional on the dual of Xj by 
φ̄ 
j (xj ) = φ x̄ j = ∑K

s=1 pj
∗∗
,s xj ,s , where x̄

j = (0, 0, ..., xj , 0, ...) [i.e., x̄ j 

has xj as jth element and zeros everywhere else]. 

Then clearly, 

∞

∑ 
∞

∑φ̄ (x) =
 ¯
 ∗∗ ∗∗ φj (xj ) =

j =0 s=0


To complete this part of the proof, we only need to show that 
φ̄ (x) = ∑j =0 φj (xj ) can be used instead of φ as the continuous ∞ 

p
 xs = p x .
s ·


¯

linear functional in (18). 
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Welfare Theorems Sketch of the Proof 

Sketch of the Proof of SWT VI


This follows immediately from the hypothesis that 0 ∈ X i for each 
i ∈ H and that there exists
T̄ such that for any x , x � ∈ X i with
 
u
i (x) > ui (x �), ui (x [T ]) > ui (x � [T ]) for all T ≥ T̄ and for all 
i ∈ H, and that there exists T̃ such that if y ∈ Y f , then y [T ] ∈ Y f 

for all T ≥ T̃ and for all f ∈ F . 
In particular, take T � = max
 

�
 
T̄ , T̃ �
 

and fix x ∈ P.
 

Since x has the property that ui x
i > ui x
i ∗∗ for all i ∈ H, we
 
also have that ui xi [T ] > ui xi ∗∗ [T ] for all i ∈ H and T ≥ T �. 

Therefore,

φ (x∗∗ [T ]) ≤ φ (x [T ]) for all x ∈ P.


Now taking limits, 

φ̄ (x
∗∗) ≤ φ̄ (x) for all x ∈ P. 
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Welfare Theorems Sketch of the Proof 

Sketch of the Proof of SWT VII 

φ̄
 φ̄
A similar argument establishes that
 
(y ) for all y ∈ Y 

(x) can be used as the continuous linear functional separating
 


(x
∗∗) ≥ �, so
 
that
 φ̄

P and Y �. 

Since
 φ̄

j (xj ) is a linear functional on Xj ⊂ RK 
+, it has an inner 

j (xj ) = pj
∗∗ xj and therefore so does · φ̄product representation,
 

φ̄

(x) = ∑j 
∞ φ̄

j (xj ) = p∗∗ ·
x .
=0 

Parts 1 and 2 have therefore established that there exists a price

vector (functional) p∗∗ such that conditions 2 and 3 hold.


Condition 1 is satisfied by construction. 

Condition 2 is suffi cient to establish that all firms maximize profits at 
the price vector p∗∗ . 

To show that all consumers maximize utility at the price vector p∗∗ , 
use the hypothesis that p∗∗ wi ∗∗ > 0 for each i ∈ H.· 
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Welfare Theorems Sketch of the Proof 

Sketch of the Proof of SWT VIII
 


We know from Condition 3 that if xi ∈ X i involves 
ui xi > ui xi ∗∗ , then p∗∗ xi	 ≥ p∗∗ wi ∗∗ .· · 
This implies that if there exists xi that is strictly preferred to xi ∗∗ and 
satisfies p∗∗ xi = p∗∗ wi ∗∗ (which would amount to the consumer · · 
not maximizing utility), then there exists xi − ε for ε small enough, 
such that ui xi − ε > ui xi ∗∗ , then p∗∗ xi − ε < p∗∗ wi ∗∗ ,· · 
thus violating Condition 3. 

Therefore, consumers also maximize utility at the price p∗∗ , 
establishing that (x∗∗ , y∗∗ , p∗∗) is a competitive equilibrium. � 
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Sequential Trading Sequential Trading 

Sequential Trading I
 

Standard general equilibrium models assume all commodities are
 
traded at a given point in time– and once and for all.
 
When trading same good in different time periods or states of nature, 
trading once and for all less reasonable. 
In models of economic growth, typically assume trading takes place at 
different points in time. 
But with complete markets, sequential trading gives the same result 
as trading at a single point in time. 
Arrow-Debreu equilibrium of dynamic general equilibrium model: all 
households trading at t = 0 and purchasing and selling irrevocable 
claims to commodities indexed by date and state of nature. 
Sequential trading: separate markets at each t, households trading 
labor, capital and consumption goods in each such market. 
With complete markets (and time consistent preferences), both are 
equivalent. 
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Sequential Trading Sequential Trading 

Sequential Trading II 

(Basic) Arrow Securities: means of transferring resources across 
different dates and different states of nature. 
Households can trade Arrow securities and then use these securities to 
purchase goods at different dates or after different states of nature. 
Reason why both are equivalent: 

by definition of competitive equilibrium, households correctly anticipate 
all the prices and purchase suffi cient Arrow securities to cover the 
expenses that they will incur. 

Instead of buying claims at time t = 0 for xi
h 
,t � units of commodity 

i = 1, ..., N at date t � at prices (p1,t � , ..., pN ,t ), suffi cient for 
household h to have an income of ∑N

i =1 pi ,t � xi
h 
,t � and know that it can 

purchase as many units of each commodity as it wishes at time t � at 
the price vector (p1,t � , ..., pN ,t � ). 
Consider a dynamic exchange economy running across periods 
t = 0, 1, ..., T , possibly with T = ∞. 

Daron Acemoglu (MIT) Economic Growth Lecture 4 November 5, 2009. 68 / 79 



� � 

Sequential Trading Sequential Trading 

Sequential Trading III 

There are N goods at each date, denoted by (x1,t , ..., xN ,t ). 
Let the consumption of good i by household h at time t be denoted

by xi

h 
,t .


Goods are perishable, so that they are indeed consumed at time t.

Each household h ∈ H has a vector of endowment ω1 

h 
,t , ..., ω

h atN ,t 
time t, and preferences 

T � � 
∑ βthuh x1

h 
,t , ..., xN

h 
,t , 

t=0 

for some βh ∈ (0, 1).

These preferences imply no externalities and are time consistent.

All markets are open and competitive.

Let an Arrow-Debreu equilibrium be given by (p∗, x∗), where x∗ is the

complete list of consumption vectors of each household h ∈ H. 
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Sequential Trading Sequential Trading 

Sequential Trading IV 

That is, 
x∗ = (x1,0, ...xN ,0, ..., x1,T , ...xN ,T ) , 

with xi ,t = xi
h 
,t h∈H
 

for each i and t. 
p∗
 is the vector of complete prices 
p∗ = p1

∗
,0, ..., pN

∗ 
,0, ..., p1,T , ..., pN ,T , with p1

∗
,0 = 1. 

Arrow-Debreu equilibrium: trading only at t = 0 and choose 
allocation that satisfies 

T N T N 

∑
∑
pi∗ ,t xih 
,t ≤
 ∑ ∑ pi
∗ ,t ωh

i ,t for each h ∈ H.
 
t=0 i =1 t=0 i =1 

Market clearing then requires 

N N 

∑
 ∑
 h ∑
ωh for each i≤
 ∑x
i ,t = 1, ..., N and t = 0, 1, ..., T .i ,t 
h∈H i =1 h∈H i =1 
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Sequential Trading V 

Equilibrium with sequential trading: 

Markets for goods dated t open at time t. 
There are T bonds– Arrow securities– in zero net supply that can be 
traded at t = 0. 
Bond indexed by t pays one unit of one of the goods, say good i = 1 
at time t. 

Prices of bonds denoted by (q1, ..., qT ), expressed in units of good 
i = 1 (at time t = 0). 
Thus a household can purchase a unit of bond t at time 0 by paying 
qt units of good 1 and will receive one unit of good 1 at time t 

Denote purchase of bond t by household h by bt
h ∈ R. 

Since each bond is in zero net supply, market clearing requires 

∑ bth = 0 for each t = 0, 1, ..., T . 
h∈H 
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Sequential Trading VI 

Each individual uses his endowment plus (or minus) the proceeds 
from the corresponding bonds at each date t.

Convenient (and possible) to choose a separate numeraire for each

date t, p1

∗∗ 
,t = 1 for all t.


Therefore, the budget constraint of household h ∈ H at time t, given 
∗∗ ∗∗):equilibrium (p , q 

N N 

∑
pi∗∗ ,t xi h 
,t ≤ ∑
p
∗∗ ∗∗ 

i ,t ω
h 
i ,t + q bh 

t t 
i =1 i =1 

for t = 0, 1, ..., T , (19)
 

together with the constraint 

T 

∑ q∗∗bh ≤ 0t t 
t=0 

∗∗ with the normalization that q = 1.0 
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Sequential Trading VII 

Let equilibrium with sequential trading be (p∗∗ , q∗∗ , x∗∗, b∗∗). 
Theorem (Sequential Trading) For the above-described economy, if 

(p∗, x∗) is an Arrow-Debreu equilibrium, then there exists a 
sequential trading equilibrium (p∗∗ , q∗∗ , x∗∗ , b∗∗), such that 
x∗= x∗∗ , p∗∗ = p∗ /p∗ for all i and t and qt

∗∗ = p∗ for all i ,t i ,t 1,t 1,t 
t > 0. Conversely, if (p∗∗ , q∗∗ , x∗∗ , b∗∗) is a sequential 
trading equilibrium, then there exists an Arrow-Debreu 
equilibrium (p∗, x∗) with x∗= x∗∗ , p∗ = p∗∗ ∗ for all i andi ,t i ,t p1,t 
t, and p1

∗
,t = qt

∗∗ for all t > 0. 

Focus on economies with sequential trading and assume that there 
exist Arrow securities to transfer resources across dates. 
These securities might be riskless bonds in zero net supply, or without 
uncertainty, role typically played by the capital stock. 
Also typically normalize the price of one good at each date to 1. 
Hence interest rates are key relative prices in dynamic models. 
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Optimal Growth in Discrete Time I 

Economy characterized by an aggregate production function, and a 
representative household. 

Optimal growth problem in discrete time with no uncertainty, no 
population growth and no technological progress: 

∞ 

max
 
∞ ∑ βtu (c (t)) (20) 

{c (t),k (t )}t =0 t=0 

subject to 

k (t + 1) = f (k (t)) + (1 − δ) k (t) − c (t) , (21) 

k (t) ≥ 0 and given k (0) = k0 > 0. 

Initial level of capital stock is k (0), but this gives a single initial
 
condition.
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Optimal Growth Optimal Growth in Discrete Time 

Optimal Growth in Discrete Time II 

Solution will correspond to two difference equations, thus need
 

another boundary condition
 


Will come from the optimality of a dynamic plan in the form of a 
transversality condition. 

Can be solved in a number of different ways: e.g., infinite dimensional 
Lagrangian, but the most convenient is by dynamic programming. 

Note even if we wished to bypass the Second Welfare Theorem and 
directly solve for competitive equilibria, we would have to solve a 
problem similar to the maximization of (20) subject to (21). 
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Optimal Growth in Discrete Time III 

Assuming that the representative household has one unit of labor 
supplied inelastically, this problem can be written as: 

∞ 

max
 
∞ ∑ βtu (c (t)) 

{c (t),k (t)}t=0 t=0 

subject to some given a (0) and 

a (t + 1) = r (t) [a (t) − c (t) + w (t)] , (22) 

Need an additional condition so that this fiow budget constraint 
eventually converges (i.e., so that a (t) should not go to negative 
infinity). 

Can impose a lifetime budget constraint, or augment fiow budget 
constraint with another condition to rule out wealth going to negative 
infinity. 
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Optimal Growth in Continuous Time 

The formulation of the optimal growth problem in continuous time is 
very similar: � ∞ 

max exp (−ρt) u (c (t)) dt (23)
∞[c (t),k (t)]t=0 0 

subject to 
k̇ (t) = f (k (t)) − c (t) − δk (t) , (24) 

k (t) ≥ 0 and given k (0) = k0 > 0. 
The objective function (23) is the direct continuous-time analog of 
(20), and (24) gives the resource constraint of the economy, similar to 
(21) in discrete time. 
Again, lacks one boundary condition which will come from the 
transversality condition. 
Most convenient way of characterizing the solution to this problem is 
via optimal control theory. 
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Conclusions
 


Models we study in this book are examples of more general dynamic 
general equilibrium models. 

First and the Second Welfare Theorems are essential. 

The most general class of dynamic general equilibrium models are not 
be tractable enough to derive sharp results about economic growth. 

Need simplifying assumptions, the most important one being the
 
representative household assumption.
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