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The treatment effects literature is about how some outcome of interest, such as earn­

ings, is affected by some treatment, such as a job training program. Evidently such 

treatment effects must be related to structural models, where the outcome of interest is 

the left hand side variable and the treatment is a right-hand side variable. Indeed, as 

we will see, treatment effects can be thought of as coming from a linear structural model 

with random coefficients. Treatment effect models do have a terminology and set up all 

their own though, so to help understand the literature it is important to set them up the 

way others do. 

To do so, let i index individuals and Di denote a treatment indicator, equal to 1 if 

a person is treated, and equal to 0 otherwise. For example, Di = 1 might correspond 

to enrollment in some training program or to some medical treatment. To describe the 

treatment effect, we need to define two other variables. Let Yi0 denote the potential 

outcome that would occur when person i is not treated (Di = 0)  and  Yi1 the potential 

outcome when they are treated (Di = 1). Clearly these are not both observed. One 

of them will be ”counterfactual”, an outcome that would have occurred if a different 

treatment had been given. The observed outcome will be 

Yi = DiYi1 + (1  − Di)Yi0. 

The treatment effect for individual i is given by 

βi = Yi1 − Yi0. 

This object is clearly not identified, because only one of the potential outcomes is ob­

served. There are several objects that may be interesting that are identified under certain 

conditions. One of these is the average treatment effect, given by 

def 
ATE = E[βi]. 

This describes the average over the entire population of the individual treatment effects. 

Another interesting object is the average effect of treatment on the treated, given by 

def 
ATT = E[βi|Di = 1]. 
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This gives the average over the subpopulation of treated people of the treatment effect. A 

third important object that is also of interest in the literature is called the local average 

treatment effect. It will be described below. 

To help understand the treatment framework and the various effects, it helps to relate 

this to a regression model with random coefficients. By the equation for Yi given above, 

Yi = Yi0 + (Yi1 − Yi0)Di = αi + βiDi, 

αi = Yi0, βi = Yi1 − Yi0. 

Thus we see that Yi follows a linear model where the treatment effect βi is the coefficient 

of Di and the constant αi and slope βi may vary over individuals. The ATE is then the 

average of the slope over the entire population and the ATT is the average of the slope 

over the subset of the population where Di = 1.  

This random coefficient set up also helps place the treatment effects environment 

in a proper historical context. The coefficient βi = Yi1 − Yi0 is sometimes called a 

”counterfactual” because it describes how Yi would have been different if Di had been 

different. In the context of demand and supply systems we are familiar with such objects 

as ”movements along a curve.” This kind of object was considered in economics as early 

as Wright (1928), who gives a nice explanation of ”movements along a curve” in a supply 

and demand setting. Similarly, the average treatment effect is just the expected value of 

the random coefficient in a linear model, i.e. the average slope of the curve. 

The ATE and ATT will be identified and can be estimated under various assumption. 

Here we will discuss various cases in which these objects are identified. The proofs of iden­

tification will consist of showing how the objects can be written in terms of expectations 

of the data. 

We begin with the simplest case. 

Constant Treatment Effects 

¯A simple special case of this model is constant treatment effects where βi = β, i.e. 

where the treatment effect is constant across individuals. Here the ATE and ATT is 
¯simply β. In  this  case,  for  ᾱ = E[αi] and  εi α,= αi − ¯

Yi = ᾱ + β̄Di + εi. 

Here the model reduces to a simple linear model with an additive disturbance and con­

stant coefficients. In contrast, the general model is also a linear model with additive 

disturbance but random slope coefficient. Note here the equivalence between having a 

random αi and having a constant plus disturbance αi = ᾱ + εi. 
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¯We can identify and estimate β and ᾱ in the usual way if we have an instrument Zi 

that is uncorrelated with εi and correlated with Di, that is  

0 =  Cov(Zi, εi) =  Cov(Zi, αi) =  Cov(Zi, Yi0), 

Cov(Zi, Di) = 0.6

In this case the coefficient is identified from the usual IV equation 

β̄ = Cov(Zi, Yi)/Cov(Zi,Di). 

This coefficient can be estimated in the usual way by replacing population covariances 

by sample covariances. In summary, there is not much new here, except terminology of 

putting standard model with dummy endogenous variable in a treatment effects frame­

work, as ”constant treatment effect.” 

Constant treatment effects is too strong for many settings. It would say that effect of 

training on earnings or of smaller class size on education is the same for every individual. 

This seems unlikely to hold in practice. Instead we would like to allow βi to vary over 

individuals. 

Random Assignment 

Random assignment means that whether or not a person is treated does not depend 

on their outcomes. The specific statistical assumption that we make is that 

E[Yi0|Di] =  E[Yi0], 

i.e. that the mean of the nontreated variable does not depend on treatment status. Equiv­

alently we can  say that  E[αi|Di] = 0. This is slightly more general than independence, 

because it allows the higher-order moments of Yi0 to depend on Di. However, it seems 

difficult to think of environments where the mean assumption would be true without full 

independence. 

To see what happens under this assumption note first that 

0, Di = 0,E[βi|Di]Di = 

( 

E[βi Di = 1], Di = 1  
= E[βi|Di = 1]Di. |

Then under the mean independence assumption, 

E[Yi|Di] =  E[αi + βiDi|Di] =  E[αi] +  E[βi|Di]Di 

= E[αi] +  E[βi|Di = 1]Di. 
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Here the dummy variable regression of Yi on a constant Di has its slope coefficient the 

ATT. If in addition we assume that the mean of Yi1 does not depend on Di, i.e. if we 

assume that 

E[Yi1|Di] =  E[Yi1], 

Then we find that ATE = ATT , since  

E[βi|Di = 1] =  E[Yi1|Di = 1]  − E[Yi0|Di = 1]  

= E[Yi1] − E[Yi0] =  E[βi]. 

Summarizing, we find that when Yi0 is mean independent of Di that the ATT is 

identified as the dummy coefficient in a regression of the outcome variable Yi on a con­

stant and the treatment dummy variable. We also find that if, in addition, Yi1 is mean 

independent of Di then the ATE is also this coefficient. Of course, this coefficient can be 

estimated by a linear regression of Yi on (1, Di). Further, as always, that linear regression 

coefficient is just the difference of means of Yi for the treated and untreated observations. 

Discussion 

Random assignment is too strong for many applications. Often individuals can choose 

whether to accept the treatment or not, e.g. by dropping out of the sample if they don’t 

like the treatment conditions. They can opt out of training programs, or not take medical 

treatment. If these decisions are related to (αi, βi) then we do not have independence of 

(αi, βi) and  Di. In terms of the linear model Yi = αi +βiDi we have possible endogeneity, 

where Di may be correlated with the random coefficients αi and βi. This  is  a  more  severe  

problem than the usual case because the slope βi also may be correlated with Di. 

There are two approaches to this problem. One (familiar) one is instrumental variables 

(IV). The second approach is called ”selection on observables.” In that approach con­

ditioning on some observable variables removes the correlation between Di and (αi, βi). 

Because IV is a most familiar and common approach we will first consider IV.  

IV Identification of Treatment Effects 

In the usual linear model, of which the constant treatment effects is a special case, 

the assumptions that are needed for the identification of the slope is that the instrument 

is uncorrelated with the disturbance and correlated with Di. Similar conditions will be 

used for IV identification of treatment effects. Let Zi be an instrument. We will assume 

throughout that 

E[αi|Zi] =  E[Yi0|Zi] =  E[Yi0] =  E[αi], .  

i.e. that the outcome without treatment is mean independent of the instrument. 
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We also will focus on the case where Zi is also a dummy variable, i.e. where Zi ∈ 

{0, 1}, with P = Pr(Zi = 1)  and  0  < P  <  1. (Question: Why do we assume 0 < P  <  1 

?). For a dummy instrument there is a useful formula for the covariance between the 

instrument and any other random variable Wi. Specifically, we have 

E[WiZi]
Cov(Wi, Zi) =  E[WiZi] − E[Wi]E[Zi] = (  − E[Wi])P 

P 
= (E[Wi|Zi = 1]  − E[Wi])P 

= {E[Wi|Zi = 1]  − (PE[Wi|Zi = 1] + (1  − P )E[Wi|Zi = 0])}P 

= (E[Wi|Zi = 1]  − E[Wi|Zi = 0])P (1 − P ). 

That is, the covariance between Wi and Zi is the difference of the conditional mean at 

the two values of Z times P (1 − P ). 

This formula has two useful implications. The first is that mean independence of Yi0 

from Zi is equivalent to Yi0 being uncorrelated with Zi. This  occurs  since  Cov(Zi, Yi0) = 0  

if and only if E[Wi|Zi = 1] =  E[Wi|Zi = 0]. A second useful implication is a formula for 

the limit of the IV estimator of the slope, given by 

Cov(Zi, Yi)
= 

E[Yi|Zi = 1]  − E[Yi|Zi = 0]  
Cov(Zi,Di) E[Di|Zi = 1]  − E[Di|Zi = 0]  

This is often referred to the Wald IV formula, referring to work where Wald suggested 

using dummy variables as an IV solution to the measurement error problem. 

In general, under mean independence of αi from Zi, it does not seem like the IV 

formula identifies the ATT, the ATE, or anything useful. Plugging in Yi = αi + βiDi, 

and using mean independence of αi we find 

Cov(Zi, Yi)
= 

E[αi|Zi = 1]  − E[αi|Zi = 0] +  E[βiDi|Zi = 1]  − E[βiDi|Zi = 0]  
Cov(Zi, Di) E[Di|Zi = 1]  − E[Di|Zi = 0]  

= 
E[βiDi|Zi = 1]  − E[βiDi|Zi = 0]  

. 
E[Di|Zi = 1]  − E[Di|Zi = 0]  

In general, the problem is that βi and Di are correlated, so that (apparently) it is not 

possible separate them out in general. There are two interesting, specific cases though 

where something important is identified. They are random intention to treat and local 

average treatment effects. 

Random Intention to Treat 

A common occurrence in medical trials is that people are randomly assigned to treat­

ment but that not all take the treatment. Here Zi represents the assignment to treatment, 
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with Zi = 1  is  individual  i is assigned to be treated and Zi = 0  if  they  are  not.  In  this  

setting, the only ones who are treated (i.e. for which Di = 1) will be those who were 

randomly assigned to treated. It turns out that in this case IV gives the ATT. This 

finding, due to Imbens and Rubin, has led to the widespread use of IV in biostatistics. 

To show that IV gives the ATT, note that Zi = 0 will not be treated, i.e. Di = 0  

when Zi = 0.  Then  

Cov(Zi, Yi)
= 

E[βiDi|Zi = 1]  − 0
= 

E[βiDi|Zi = 1]  
. 

Cov(Zi, Di) E[Di|Zi = 1]  − 0 E[Di|Zi = 1]  

Also, note that Di = 1  implies  Zi = 1, so that {Di = 1} ⊂ {Zi = 1}. Therefore, 
E[βi|Di = 1, Zi = 1] =  E[βi|Di = 1]  =  ATT . Also, it follows similarly to the reasoning 

above that 

DiE[βi|Di, Zi = 1]  =  DiE[βi|Di = 1, Zi = 1] =  Di · ATT. 

By iterated expectations it follows that 

E[βiDi|Zi = 1]  =  E[DiE[βi|Di, Zi = 1]|Zi = 1]  =  ATT · E[Di|Zi = 1]. 

Then dividing gives 

Cov(Zi, Yi)
= 

E[βiDi|Zi = 1]  
= 

ATT · E[Di|Zi = 1]  
= ATT. 

Cov(Zi,Di) E[Di|Zi = 1]  E[Di|Zi = 1]  

The Local Average Treatment Effect 

A second case where an interesting treatment effect is identified by IV involves inde­

pendence and monotonicity conditions. Consider the following conditions: 

Independence: Di = Π(Zi, Vi) and (βi, Vi) is independent of Zi; 

Monotonicity: Π(1, Vi) ≥ Π(0, Vi) and Pr (Π(1, Vi) > Π(0, Vi)) > 0. 

The independence condition says that there is a reduced form Π(z, v) with a distur­

bance Vi that may be a vector and enters nonlinearly. An example is a threshold crossing 

model where Di = 1(Zi + Vi > 0). The monotonicity condition changing the instrument 

only moves the treatment one direction. This condition is satisfied in a threshold crossing 

model. The reduced form is sometimes called the selection equation, with a person being 

selected into treatment when Π(z, v) = 1.  
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Under these conditions it turns out that IV identifies an average of βi over a subpop­

ulation that is referred to as the Local Average Treatment Effect (LATE). This effect is 

defined as 

LATE = E[βi|Π(1, Vi) > Π(0, Vi)]. 

This object is the average of the treatment effect over the individuals whose behavior 

would be different if the instrument were changed. This object may often be a parameter 

of interest. For example, in a model where Yi is the log of earnings, Di is completing high 

school, and Zi is a quarter of birth dummy, LATE is the average effect of a high school 

education over all those dropouts who would have remained in school had their quarter 

of birth been different and for those who remained in school but would have dropped 

out if their quarter of birth were different. Thus, IV estimates the average returns to 

completing high school for potential dropouts. This is an interesting parameter, although 

it is not the returns to schooling over the whole population. 

To show that IV give LATE under independence and monotonicity, let Ti = Π(1, Vi)− 

Π(0, Vi). Then we have 

E[βiDi|Zi	 = 1]  − E[βiDi|Zi = 0]  

= E[βiΠ(1, Vi)|Zi = 1]  − E[βiΠ(0, Vi)|Zi = 0]  

= E[βiΠ(1, Vi)] − E[βiΠ(0, Vi)] = E[βiTi]. 

It follows similarly that 

E[Di|Zi = 1]  − E[Di|Zi = 0] =  E[Ti]. 

By monotonicity, Ti is a dummy variable, taking the value zero or one. Therefore we 

have 
cov(Zi, Yi) E[βiTi] 
cov(Zi,Di)

= 
E[Ti]

= E[βi|Ti = 1] =  E[βi|Π(1, Vi) > Π(0, Vi)]. 

LATE Empirical Example 

An empirical example is provided by the Angrist and Krueger (1991) study of the 

returns to schooling using quarter of birth as an instrument. We consider data drawn 

from the 1980 U. S. Census for males born in 1930-1939, as in Donald and Newey (2001, 

”Choosing the Number of Instruments,” Econometrica). The 2SLS estimator with 3 

instruments is .1077 with standard error .0195 and the FULL estimator with 180 instru­

ments is .1063 with standard error .0143 (corrected for many instruments). Thus we find 

returns to schooling of ”potential dropouts” is about 11 percent. 

Selection on Observables 
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The other kind of model that has been used to identify treatment effects is one where 

conditioning on observable (or identifiable) variables Xi makes the treatment behave as 

if it were randomly assigned. This is like removing endogeneity in a linear equation by 

adding regressors. The conditioning variables are like omitted regressors, which remove 

the endogeneity when they are included. The specific assumption that is made is 

E[Yi0|Xi,Di] =  E[Yi0|Xi]. 

In word, it is assumed that Yi0 is mean independent of Di conditional on Xi. This  

assumption is analogous to the previous one that E[Yi0|Di] =  E[Yi0], being a conditional 

version of that hypothesis. 

One concern with this kind of assumption is the source for the variables Xi. There  are  

some economic models where such variables are implied by the model. However in many 

cases in applications these variables Xi are chosen without reference to a model. In those 

cases identification is fragile, requiring specifying just the right Xi. Conditional mean 

independence that holds for Xi need not hold for a subset of Xi nor when additional 

variables are added to Xi. 

This assumption allows identification of the ATT, with one additional condition. Let 

X denote the support of Xi (the smallest closed set having probability one), and X0 and 

X1 the support of Xi conditional on Di = 0  and  Di = 1 respectively. The additional 

condition is the common support condition that 

X = X0 = X1. 

This assumption is necessary and sufficient for E[Yi|Xi,Di = 1]  and  E[Yi|Xi, Di = 0]  to  

be well defined for all Xi. It  is  verifiable and may or may not be satisfied in practice. 

The common support condition and conditional mean independence give 

E[Yi|Xi, Di	 = 1]  − E[Yi|Xi,Di = 0] =  E[αi|Xi,Di = 1]  − E[αi|Xi, Di = 0] +  E[βi|Xi,Di = 1]  

= E[βi|Xi, Di = 1]. 

The object E[βi|Xi,Di = 1] is a conditional version of the ATT. By iterated expectations 

the ATT is then identified as the expectation over Xi of this difference given Di = 1, 

that is 

ATT = E[βi|Di = 1] =  E[{E[Yi|Xi,Di = 1]  − E[Yi|Xi,Di = 0]}|Di = 1]. 

The ATE  can also be obtained if we assume  that  Yi1 is conditional mean independent of 

Di conditional on Xi. In that case 

E[βi|Xi,Di	 = 1] =  E[Yi1|Xi, Di = 1]  − E[Yi0|Xi,Di = 1]  

= E[Yi1|Xi, ] − E[Yi0|Xi] =  E[βi|Xi]. 
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Therefore 

ATE = E[βi] =  E[{E[Yi|Xi, Di = 1]  − E[Yi|Xi, Di = 0]}] 

Unlike the unconditional case the ATE is a different function of the data distribution 

than the ATT. The ATE is obtained by averaging E[Yi|Xi, Di = 1]  − E[Yi|Xi, Di = 0]  

over all Xi while the ATT is obtained by averaging over just Di = 1. 

Estimating the ATT and ATE under these conditional restrictions is a challenge. 

Notice that they depend on conditional expectations. Usually we will not want to assume 

that these conditional expectations have any particular functional form. Consequently, 

we will want to use nonparametric regression estimators, which will be discussed later in 

the course. 

Nonparametric estimation is difficult when the dimension of Xi is large. This is 

often referred to as the ”curse of dimensionality.” Some have tried to reduce the curse 

of dimensionality using the “propensity score” P (X), which is defined as the conditional 

probability of being treated (or ”selected”) given X, i.e. 

P (Xi) = Pr(Di = 1|Xi) =  E[Di|Xi]. 

It turns out that the conditional mean independence of Yi0 given Xi implies conditional 

mean independence given P (Xi). Thus, if P (Xi) were known, it would be possible to 

identify and estimate the ATE and ATT using a one dimensional conditioning variable 

rather than a multidimensional variable Xi. Specifically, if E[Yi0|Xi,Di] =  E[Yi0|Xi] and  

0 < P (Xi) < 1 with probability one then E[Yi0|P (Xi),Di] =  E[Yi0|P (Xi)], so that 

reasoning like that above gives 

ATT = E[{E[Yi|P (Xi), Di = 1]  − E[Yi|P (Xi),Di = 0]}|Di = 1]. 

If, in addition, E[Yi0|Xi,Di] =  E[Yi0|Xi] then  

ATE = E[{E[Yi|P (Xi), Di = 1]  − E[Yi|P (Xi),Di = 0]}]. 

Thus, ATE and ATT are expectations of nonparametric functions of two variables, P (Xi), 

and Di. 

If P (Xi) is completely unknown and unrestricted there is no known advantage for 

conditioning on the propensity score, since P (Xi) is also a function of a high-dimensional 

argument. Thus, it appears that any advantage for using the propensity score will depend 

on knowing more about P (X) than about E[Yi|Xi,Di]. 

It remains to prove that independence conditional on X implies independence condi­

tional on P (Xi). For notational simplicity let Pi = P (Xi). We will prove the result for 

a general variable Wi. The general result will then apply to both Yi0 and Yi1. To prove 
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that E[Wi|Xi,Di] =  E[Wi|Xi] implies E[Wi|Pi,Di] =  E[Wi|Pi], note that by iterated 

expectations, E[Di|Pi] =  E[E[Di|Xi]|Pi] =  Pi. By iterated expectations again, 

E[Wi|Pi,Di = 1] =  E[E[Wi|Xi, Di = 1]|Pi,Di = 1]  =  E[E[Wi|Xi]|Pi,Di = 1]  

= 
E[DiE[Wi|Xi]|Pi]

= 
E[PiE[Wi|Xi]|Pi] 

E[Di|Pi] Pi 

= E[E[Wi|Xi]|Pi] =  E[Wi|Pi]. 

By similar reasoning we also have E[Wi|Pi, Di = 0] =  E[Wi|Pi], so the conclusion follows 

by the previous equation. 

Regression Discontinuity Design 
There are two cases here, one where the treatment variable jumps discontinuously, 

and one where the treatment probability is discontinuous. Consider the discontinuous 

treatment variable first. 

We suppose that Di = 1(Xi ≥ c). In this case E[Yi0|Di,Xi] =  E[Yi0|Xi] and  E[Yi1|Di,Xi] =  

E[Yi1|Xi] hold by construction. The common support assumption is not satisfied. Indeed, 

in this case X0 and X1 are disjoint. 

We take a different approach to identification here, and instead rely on a continuity 

condition for E[Yi0|Xi = x] and  E[Yi1|Xi = x]. 

Assumption: E[Yi0|Xi = x] and  E[Yi1|Xi = x] are continuous in x at c. 

Note that for Yi = Yi0 for Xi < c  and Yi = Yi1 for Xi ≥ c. Then 

E[Yi0 Xi = c] = lim E[Yi0 Xi = x] = lim E[Yi Xi = x],|
x c 

|
x c 

|
↑ ↑

E[Yi1 Xi = c] = lim E[Yi1 Xi = x] = lim E[Yi Xi = x].|
x c 

|
x c 

|
↓ ↓

It follows that 

E[βi Xi = c] =  E[Yi1 − Yi0 Xi = c] = lim E[Yi Xi = c] − lim E[Yi Xi = c].| |
x↓c 

|
x↑c 

|

Thus, the conditional treatment effect E[Yi1 − Yi0|Xi = c] is identified as the jump in 

E[Yi|Xi = x] at  x = c. 

We can also interpret this differently. Similarly to above, 

E[βi|Xi = c] =  E[Yi|Di = 1,Xi = c] − E[Yi|Di = 0,Xi = c]. 

Note that both of E[Yi|Di = 1,Xi = c] and  E[Yi|Di = 0,Xi = c] are nonparametric 

regression functions evaluated at the boundary of their support, the first at the  lower  

boundary and the second at the upper. So regular kernel regression is not good. Can do 

locally linear regression. 
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