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Great thing about panel data is that it allows us to control for individual effects that 

are correlated with regressors. Well known how to do this in linear models. These notes 

are about what can be done in nonlinear models. 

Likelihoods with Individual Effects 

Data: Yi = [Yi1, ..., YiT ]
0, Xi = [Xi1, ..., XiT ]

0, (i = 1, ..., n). 

To motivate the model we consider the linear model as a starting point: 

Yit = Xit
0 β + αi + ηit, E[ηit|Xi, αi] = 0. 

Alternative, equivalent formulation: 

E [Yit|Xi, αi] =  Xit
0 β + αi. 

The model specifies the conditional mean of Yi given Xi, αi. A likelihood version of 

this specifies the conditional pdf f(y|x, α, θ) of  Yi given Xi, αi and a parameter vector θ. 

Ex: Normal linear model: For eT a T × 1 vector of 10s, 

Yi|(Xi, αi) ∼ N(Xiβ + αieT , σ
2IT ). 

This is distributional version of a linear model. 

Ex: Binary choice model: Yit ∈ {0, 1}; such as labor force participation. 

Yit, (t = 1, ..., T ) independent, Prob(Yit = 1|Xi, αi) =  G(Xit
0 β + αi). 

Ex: Count data: Yi1, ..., YiT indep, Yit|Xi, αi Poisson with mean exp(Xit
0 β + αi). 

The central question in nonlinear panel data models is how to control for presence of 

the individual effect αi. Most methods that control for αi in linear models do not extend 

to nonlinear ones. For example, differencing does not work. In the linear conditional 

expectation model, we have 

E [Yit − Yit−1| itβ + E[αi|Xi] − (Xi,t−1β + E[αi|Xi] =  X 0 0 Xi]) = (Xit − Xi,t−1)
0β, 
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so can regress difference in Y on difference in X to consistently estimate β. In nonlinear 

model, αi does not drop out when we difference. For example in binary choice model, 

E [Yit − Yit−1|Xi] =  E[G(Xit
0 β + αi) − G(Xit

0
−1β + αi)|Xi]. 

Here the αi does not get differenced out, due to the nonlinearity of G( ). Discussion•
question: Does using the linear probability model fix this problem?  

Fixed Effects and the Incidental Parameters Problem 

Fixed effects is generally inconsistent in a nonlinear model as n grows with T fixed. 

Here by fixed effects we mean maximizing the log-likelihood over each αi as well as θ. 

In a linear model, when we do least squares treating αi as a parameter to be estimated 

we do get consistency. When we do maximum likelihood treating αi as a parameter to 

be estimated we generally do not. This is known as the incidental parameters problem. 

It is caused by only having T observations to estimate each αi, so  that  as  n grows the 

estimate of αi remains random. In linear models this randomnes gets ”averaged out.” In 

nonlinear models it does not. 

To be more precise we can derive an expression for the limit of the fixed effects 

estimator as n grows with T fixed. The estimator is 

n
1 X 

θ̂ = arg  max  ln f(Yi Xi, θ, αi). 
θ,α1,...,αn n 

|
i=1 

Alternatively, if we concentrate out each αi, for  a  fixed θ each fixed effect is given by 

α̂i(θ) = max ln f(Yi|Xi, θ, αi). 
α 

Substituting in and maximize over θ to get θ,̂

n
1 X 

θ̂ = arg  max  ln f(Yi Xi, θ, α̂i(θ)). 
θ n 

|
i=1 

By the usual extremum estimator, as n grows for fixed T the estimator θ̂ has plim 

θT = arg  max  E[ln f(Yi Xi, θ, α̂i(θ))]. 
θ 

|

Randomness in α̂i(θ) leads to inconsistnecy of θ̂. If  ̂αi(θ) were replaced by 

ᾱi(θ) = arg  maxE[ln f(Y X, θ, α)], 
α 

|

would get consistency. So, the problem is a kind of a measurement error in this nonlinear 

model. 
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Ex: Binary  logit,  Yit ∈ {0, 1}, 

Pr(Yit = 1|Xi, αi) = exp(β0Xit + αi)/[1 + exp(β0Xit + αi)]. 

It is known that the fixed effects estimator β̂FE  satisfies 

β̂FE  
p 
2β0→ 

Thus, bias can be severe. 

Conditional Maximum Likelihood 

Sometimes there is a statistic Si such that αi drops out of the conditional likelihood 

of Yi given Xi and Si.  In such a case,  

f(Yi|Xi, Si, β, αi) =  f(Yi|Xi, Si, β
n

), 

1 X 
β̂ = arg  max ln f(Yi Xi, Si, β). 

β n 
|

i=1 

This estimator is consistent and asymptotically normal, as usual for a conditional MLE. 

Also, it is asymptotically efficient when the distribution of αi conditional on Xi is un­

known. Thus, conditioning on Si provides an excellent solution. The problem is that 

such an Si only exists in a few cases. These include the Gaussian linear model, binary 

choice logit, the Poisson model for count data, and the proportional hazards model. In 

most other models there is no such Si. Thus, the conditional MLE has limited usefulness. 

Correlated Random Effects: 

An approach that does apply generally is to model the distribution of αi conditional 

on Xi. In a likelihood setting, such a model corresponds to a p.d.f. of αi given Xi, which  

we denote by g(α|X, γ), where γ are the parameters of this model. The the conditional 

likelihood of Y given X is then obtained by integrating out α, as  Z 
f(Y |X,β, γ) =  f(Y |X,β, α)g(α|X, γ)dα. 

The MLE is given by 

n n Z 
1 X 1 X 

β,ˆ γ̂ = arg  max
n 

ln f(Yi|Xi, β, γ) =  
n 

ln f(Yi|Xi, β, α)g(α|Xi, γ)dα 
β,α 

i=1 i=1 

This approach is very general, but the consistency of β̂ depends on the g(a|X, γ) being  

correctly specified. Also, it may be difficult to calculate the integral. More fundamentally, 

Cite as: Whitney Newey, course materials for 14.386 New Econometric Methods, Spring 2007.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology.
Downloaded on [DD Month YYYY].



these models may not be time consistent, in that the form of them changes if more time 

periods are included. 

Ex: Correlated random effects probit. Suppose that conditional on (Xi, αi), the 

latent variables Yi 
∗ 
1, ..., Y iT 

∗ are independent and Yit 
∗ has distribution N(Xit

0 β + αi, σt 
2). 

Let xi = vec(Xi
0) be the vector of all observations across t on the regressors. Suppose 

also that the conditional distribution of αi given Xi is N(xi
0λ, σα

2 ). Assume that the 

observed binary variables Yit satisfy Yit = 1(Yit 
∗ > 0). Then for θ = (β0, λ0, σ1

2, ..., σT 
2 , σα

2 ), 

Z 
Pr(Yit = 1|Xi, θ) =  Φ((X 0 β + α)/σt)σ−1φ((α − x0λ)/σ2 )dαit α i αZ Z (X0 β+α)/σtit

= φ(r)σ−1φ((α − x0λ)/σ2 )dαdr α i α
−∞Z Z X0 βit

= σt
−1φ((u + α)/σt)σ

−1φ((α − x0iλ)/σ
2 )dαduα α

−∞Z Z X0 qβit

= φ((u − xi
0λ)/ σt 

2 + σα2 )dαdu Ã−∞ ! 
Xit
0 β + xi

0λ 
= Φ p ; 

σ2 + σ2 
t α 

where the second equality follows by Φ being the standard normal CDF, the third by 

the change of variables u = σtr − α, and the fourth by the fact that the integral over α 

corresponds to a mixture of N(0, σt 
2) and  N(x0iλ, σα

2 ). 

One could also derive a joint probability, but it is complicated because of correlation 

across time periods. That would be needed for for MLE, but can estimate just from 

marginal probabilities for each time period. Idea is to estimate the probability given x, 

and then do minimum distance to estimate β and other parameters. Let et denote the 

tth T × 1 unit vector and  

πt = 
ept ⊗ β + λ

, et = tth . 
σ2 + σ2 
t α 

Then we have 

Pr(Yit = 1|Xi, θ) =  Φ(xi
0πt). 

Thus, we can do probit on each time period separately to obtain π̂1, ..., π̂T . Let  δt = p
1/ σt 

2 + σα2 , (t = 1, ..., T ),  where we normalize  δ1 = 1. Reparameterize so that θ = 

(β0, λ0, δ2, ..., δT )
0 and for π = (π1

0 , ..., πT
0 )0 let ⎞⎛ 

h(π, θ) = 
⎜⎝


δ1π1 − e1 ⊗ β − λ 
. .
. 

δT πT − eT ⊗ β − λ 

⎟⎠
.
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We can then do minimum distance, using the individual probit π̂ mentioned above. 

Here is an empirical example from Chamberlain’s (1984) Handbook of Econometrics 

Chapter. It is a labor force participation example, with 924 women, for 1968, 70, 72, 74.. 

The two regressors are number of children under 6 and number of children. Here are the 

results: 
Probit -.121 -.058 Logit .-573 -.336 

(.046) (.029) (.115) (.120) 
Quite different estimates; ratios are similar. 

The Chamberlain (correlated random effects) estimator is troubling in that it depends 

on T in an essential way. Also, there are many coefficients in π. A more parsimonius 

model, less sensitive to time specification is to assume that αi ∼ N(λ0x, σ2¯ α) conditional 

on Xi. 

Important question is what the parameter of interest is. In some contexts it is β, 

which might be parameters of utility function. However, in binary choice we might want 

to consider ”average sructural function” Z 
μ(X) =  Φ((X 0β + α)/σt)f(α)dα 

By iterated expectations, holding X fixed, 

μ(X) =  E[E[Φ((X 0β + αi)/σt)|Xi]] 

= E[Φ(δt(X
0β + x0iλ))] P 

This object can be estimated by μ̂(X) =  n
i=1 Φ(δ̂t(X

0β̂ + xi
0 λ̂))/n. 

Some Semiparametric Results 

There are some distribution free results that are useful. An example is Poisson model, 

where conditional on Xi and αi the variable Yit is independent over time and Poisson 

with mean eXit
0 β+αi . Good model for count data with patents. Woodridge showed that 

consistency of CMLE only requires 

E [Yit|Xi, αi] =  e Xitβ+αi 

This is a good exercise. 

Honore has results for Tobit. See Handbook of Econometrics chapter by Arellano and 

Honore on Honore’s website. Manski had a maximum score estimator for binary choice 

model with fixed effect. Weakness of both of these is require homoskedasticity over time, 

an assumption almost never satisfied. 

Fixed Effects Again 
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The difficulty of finding consistent estimators for these models has led to reexami­

nation of fixed effects. Recently been found in Monte Carlo studies that in spite of the 

inconsistency, bias not large in applications. Also, large T bias corrections have been 

derived. 

One can use a simple expansion to consider how bad fixed effects bias is and how 

to correct. Intuitively, as T grows the randomness in the estimated fixed effects should 

go away and hence limT −→∞ θT = θ0. One can show more under certain smoothness 

conditions, that 
B 1 

θT = θ0 + + O( ). 
T T 2 

Assume also that as n and T both grow, the fixed effects estimator is asymptotically 

normal when centered at its plim, so that ³ ´ 
(nT )1/2 θb− θT

d −→ N(0, Ω). 

Consider then what happens when n and T grow at the same rate, i.e. n/T ρ. We  → 

have ³ ´ ³ ´ 
(nT )1/2 θb− θ0 = (nT )1/2 θb− θT + (nT )1/2(θT − θ0) ³ ´ 

= (nT )1/2 θb− θT + (nT )1/2 B

T 
+ O((nT )1/2/T 2) 

d ¡ ¢ 
N Bρ1/2 , Ω .→ 

Here there is asymptotic bias even when T grows at the same rate as n. Consequently,  

asymptotic confidence intervals for the fixed effects esimator will be asymptotically in­

correct even when T grows at the same rate as n. 

A bias corrected estimator could be formed using at estimator B̂ of B, 

ˆ ˆ ˆθ1 = θ − B/T. 

Suppose that the bias correction B̂ is well estimated in the sense that 

p
(nT )1/2(B̂ − B)/T → 0. 

Assume that n/T 3 −→ 0, i.e. T grows faster than the cube root of n. Plugging in as 

before we get, ³ ´ ³ ´ b b ˆ(nT )1/2 θ1 − θ0 = (nT )1/2 θ − θT + (nT )1/2(θT − θ0 − B/T ) ³ ´ 
= (nT )1/2 θb− θT + (nT )1/2(B − B̂)/T + O((nT )1/2/T 2) 

d → N (0, Ω) . 
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The condition n/T 3 −→ 0 suggests this may lead to decent estimators in sample sizes 

typical in econometrics, e.g. n = 1000, T >  10. 

Formulas for B̂ complicated: See Hahn and Newey (2004) Econometrica. 

Monte Carlo Example: Like Heckman (1981). Design is: 

yit = 1(xitθ0 + αi + εit > 0), 

αi ∼ N(0, 1), εit ∼ N(0, 1), 

xit = t/10 + xi,t−1/2 +  uit, 

xi0 = ui0, uit = U(− 1/2, 1/2). 

N = 100, T  = 8;  β = 1, − 1. 

Results for estimators of θ0. Also, estimators of average of the derivative of the choice 

probability Φ(x0θ + α) with respect to x at a particular x = w, which  is  

μ = θ0Ē[φ(w
0θ0 + αi)]. 

The fixed effects estimator of this object is 

nX ³ ´ 
μ̂ = θ̂ φ w0θ̂ + α̂i /n. 

i=1 

Table Three: Properties of θ̂, T = 8. 
Estimator of θ0 Mean Med. SD p̂; .05 p̂; .10 

MLE 1.18 1.17 .151 .267 .370 
Jackknife .953 .950 .119 .056 .102 
Analytic 1.05 1.05 .134 .062 .135 
Analytic-M 1.05 1.05 .132 .060 .126 

Table Five: Properties of θ̂, T = 4  
Estimator of θ0 

MLE 
Mean 
1.42 

Med. 
1.41 

SD 
.397 

p̂; .05 
.269 

p̂; .10 
.373 

Jackknife .752 .743 .262 .100 .177 
Analytic 1.12 1.11 .306 .055 .101 
Analytic-M 1.21 1.20 .335 .102 .172 
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Table Four: Properties of μ̂, T = 8. 
Estimator of μ/μ0 Mean Med. SD p̂;.05 p̂;.10 

MLE 1.02 1.02 .131 .078 .140 
Jackknife 1.00 .992 .130 .086 .159 
Analytic 1.02 1.02 .133 .090 .153 
Analytic-M 1.02 1.02 .131 .087 .154 

Table Six: Properties of μ̂, T = 4. 
Estimator of μ/μ0 Mean Med. SD p̂; .05 p̂; .10 

MLE 1.00 1.00 .257 .103 .168 
Jackknife 1.06 1.05 .307 .159 .224 
Analytic .996 .994 .265 .113 .178 
Analytic-M 1.05 1.05 .266 .117 .185 
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