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Introduction 
Function form misspecification error is important in elementary econometrics. Flexi­

ble functional forms; e.g. translog 

y = β1 + β2 ln(x) +  β3[ln(x)]2 

Fine for simple nonlinearity, e.g. diminishing returns. Economic theory does not 

restrict form. Nonparametric methods allow for complete flexibility. Good for graphs. 

Good for complete flexibility with a few dimensions. 

An Empirical Example 
An example illustrates. Deaton (1989); effect of rice prices on the distributions of 

incomes in Thailand. 

p price of rice; q amount purchased; y amount sold. 

Change in benefits from dp is dB = (q − y)dp = p(q − y)d ln(p). 

Elasticity form: 
dB 

/d ln(p) = (w − py/x), 
x 

w budget share of rice purchases; x total expenditure. Benefit/expenditure measure is 

the negative of right-hand side. 

Empirical Distribution Function 
Simple nonparametric estimation problem. The CDF of Z is FZ (z) = Pr(Z ≤ z). Let 

Z1, ..., Zn be i.i.d. data, 1(A) indicator of A, so  FZ (z) =  E[1(Zi ≤ z)]. 

X 
F̂Z (z) =

#{i|Zi ≤ z} 
=
1 n

1(Zi ≤ z). 
n n i=1 

Empirical CDF. 

Probability weight 1/n on each observation.


Consistent and asymptotically normal.


Nonparametrically efficient.


No good for density estimation.


Kernel Density Estimator 
Add a little continuous noise to smooth out empirical CDF. 
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Z̄n have empirical CDF.

¯
U a continuous random variable with pdf K(u), indep of Zn 

h a positive scalar. 

Define 

Z̃ = Z̄n + hU 

Empirical CDF plus noise. Kernel density estimator is density of Z̃. R 
Derivation: Let FU (u) =  u K(t)dt be CDF of U .−∞ 

By iterated expectations 

E[1( Z̃ ≤ z)] = E[E[1(Z̃ ≤ z)|Z̄n]], 

so by 1( Z̃ ≤ z) = 1(U ≤ (z − Z̄n)/h), 

F ̃ (z) = Pr(  Z̃ ≤ z) =  E[1(Z̃ ≤ z)]Z 
¯

= E[[1(U ≤ 
z − 

h

Zn 
)|Z̄n]] 

nz − Z̄n X z − Zi 
= E[FU ( )] = FU ( )/n. 

h hi=1 

Differentiating gives pdf 

nX 
f̂  
h(z) =  dF ̃ (z)/dz = Kh(z − Zi)/n;Z 

i=1 

Kh(u) =  h−1K(u/h). 

This is a kernel density estimator. The  function  K(u) is the  kernel and the scalar h is 

the bandwidth. 

nX 
f̂  
h(z) =  dF ̃ (z)/dz = Kh(z − Zi)/n;Z 

i=1 

Kh(u) =  h−1K(u/h). 

Bandwidth h controls the amount of smoothing. As h increases, density smoother, but 

more ”noise” from U , i.e. more bias. As h −→ 0 get rough density, spikes at data points, 

but bias shrinks. Choosing h important in practice; see below. f̂  
h(z) will be consistent 

if h −→ 0 and  nh −→ ∞ . 

Examples: 

Gaussian kernel: K(u) =  (2π)−1/2e−u
2/2 . 

Epanechnikov: K(u) =  1(|u| ≤ 1)(1 − u2)(3/4). 
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Choice of K does not matter as much as choice of h. Epanechnikov kernel has slightly 

smaller mean square error, and so optimal. 

Bias and Variance of Kernel Estimators 
(Z1, ..., Zn) are i.i.d.. 

Bias: f0(z) is pdf  of  Zi. Expectation of kernel estimator; with Z Z 

E[f̂  
h(z)] = Kh(z − t)f0(t)dt =

1 
K( 

z − t 
)f0(t)dt 

h hZ 

= K(u)f0(z − hu)du, 

for change of variables u = (z − t)/h. Taylor  expand  f0(z − hu) around  h = 0,  

f0(z − hu) =  f0(z) − f0
0(z)hu + Γ(h, u, z)h2 , 

Γ(h, u, z) =  f0
00(z + h̄(z, u)u)u 2/2, 

R R¯where |h(z, u)| ≤ |h|. For  K(u)u2du < ∞ , K(u)udu = 0, assuming f0
00(z) contin­

uous and bounded, Z Z 

K(u)Γ(h, u, z)du −→ [ K(u)u 2du]f0
00(z)/2. 

Then for o(h2) =  a(h) with limh−→ 0a(h)/h
2 = 0,  Z Z 

h2 K(u)Γ(h, u, z)du = h2[ K(u)u 2du]f0
00(z)/2 

+o(h2) 

Then multiplying the expansion 

f0(z − hu) =  f0(z) − f0
0(z)hu + Γ(h, u, z)h2 

by K(u) and integrating gives Z 

E[f̂  
h(z)] = f0(z) +  h2f0

00(z) K(u)u 2du/2 +  o(h2). 

We can summarize these calculations in the following result: 

Proposition 1: If f0(z) is twice continuously differentiable with bounded second R R R 
derivative, K(u)du = 1, K(u)udu = 0, u2K(u)du < ∞ , then  Z 

E[f̂  
h(z)] − f0(z) =  h2f 00(z) K(u)u 2du/2 +  o(h2).0 
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Variance: From Proposition 1, E[Kh(z − Zi)] = E[f̂  
h(z)] is bounded as h −→ 0. 

Let O(1/n) denote (an)∞n=1 such that nan is bounded. Then by f̂  
h(z) a sample of average 

of Kh(z − Zi), for h −→ 0, 

V ar(f̂  
h(z)) = {E[Kh(z − Zi)

2] − {E[Kh(z − Zi)]}2}/nZ 

=
1 

K( 
z − t 

)2f0(t)dt/n + O(1/n)
h2 hZ1 

= K(u)2f0(z − hu)du/(nh) +  O(1/n). 
h R 

For f0(z) continuous and bounded and K(u)2du < ∞ , Z Z 

K(u)2f0(z − hu)du −→ f0(z) K(u)2du. 

By h −→ 0, it follows that nhO(1/n) −→ 0, so that O(1/n) =  o(1/nh). Plugging in 

above variance formula  we  find, Z 

V ar(f̂  
h(z)) = f0(z) K(u)2du/(nh) +  o(1/(nh)). 

We can summarize these calculations in the following result: 

R 
Proposition 2: If f0(z) is continuous and bounded, K(u)2du < ∞ , h −→ 0, and 

nh →∞  then Z 

V ar[f̂  
h(z)] = f0(z) K(u)2du/(nh) +  o(1/(nh)). 

Consistency and Convergence Rate of Kernel Estimators 
For consistency implied by 

h 0; bias goes to zero. −→ 

nh −→ ∞ ; variance goes to zero. 

Bandwidth shrinks to zero slower than 1/n. 

Intuition for the h −→ 0: Smoothing ”noise” must go away asymptotically to remove 

all bias. 

Intuition for nh −→ ∞ : For  Epanechnikov  kernel;  K((z − Zi)/h) > 0 if and  only  

if |z − Zi| < h. If  h shrinks as fast as or faster than 1/n, the number of observations 

with |z − Zi| < h  will not grow, so averaging over a finite number of observations, hence 

variance does not go to zero. 
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Explicit form for (MSE) under h −→ 0, nh  −→ ∞ . 

MSE(f̂  
h(z)) = V ar(f̂  

h(z)) + Bias2(f̂  
h(z))Z 

= f0(z) K(u)2du/(nh) Z 

+h4{f 00(z) K(u)u 2du/2}2 
0 

+o(h4 + 1/(nh)). 

By h −→ 0, MSE vanishes slower than 1/n. Thus, kernel estimator converges slower 

than n−1/2 . Avoidance of bias by h −→ 0 means fraction of the observations used goes 

to zero. 

Bandwidth Choice for Density Estimation: 
Graphical: Choose one that looks good, report several. 

Minimize asymptotic integrated MSE. Integrating over z, Z Z 

MSE(f̂  
h(z))dz = K(u)2du/(nh) Z Z 

+ f0
00(z)2dz[ K(u)u 2du/2]2h4 

+o(h4 + 1/(nh)). 

Min over h has first-order conditions Z 

0 =  − n−1h−2C1 + h3 f0
00(z)2dzC2, Z Z 

C1 = K(u)2du,C2 = [  K(u)u 2du]2 . 

Solving gives Z 

h = [C1/{nC2 f 00(z)2dz}]1/5 .0 Z 

h = [C1/{nC2 f0
00(z)2dz}]1/5 . 

Asymptotically optimal bandwidth. Could be estimated by ”plugging-in” estimator for 

f0
00(z). This procedure depends on initial bandwidth, but final estimator not as sensitive 

to choice of bandwidth for f0
00(z) as choice of bandwidth for f0(z). 

Silverman’s rule of thumb: Optimal bandwidth when f0(z) is Gaussian and K(u) is  

a standard normal pdf. 

h = 1.06σn1/5, σ  = V ar(zi)1/2 . 

Use estimator of the standard deviation σ. 

Cite as: Whitney Newey, course materials for 14.386 New Econometric Methods, Spring 2007.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology.
Downloaded on [DD Month YYYY].



Estimate directly the integrated MSE: Z Z 

MSE(f̂  
h(z))dz = E[{f̂  

h(z) − f0(z)}2]dz Z 

= E[ {f̂  
h(z) − f0(z)}2] Z Z 

= E[ f̂  
h(z)

2] − 2E[ f̂  
h(z)f0(z)] 

+f0(z)
2 . 

Unbiased estimator of E[ 
R 
f̂  
h(z)

2] is  Z ZX 
f̂  
h(z)

2dz = Kh(Zi − t)Kh(t − Zj)dt/n
2 

i,j 

To find unbiased estimator of second, note that Z Z Z  

E[ f̂  
h(z)f0(z)dz] =  Kh(z − t)f0(z)f0(t)dzdt. 

By observations independent, we can average over pairs to estimate this term. Last term 

in MSE does not depend on h, so we can drop. Combining estimates of first two terms 

gives criterion. Z 2 X 
CV̂ (h) =  f̂  

h(z)
2dz − 

n(n − 1) 
Kh(Zi − Zj). 

i=j6Z 2 X 
CV̂ (h) =  f̂  

h(z)
2dz − 

n(n − 1) 
Kh(Zi − Zj). 

i=j6

Choosing h by minimizing CV̂ (h) is called  cross-validation. Motivation for terminology 

is second term is 

nX 
−2 f̂  −i,h(Zi)/n, 

i=1 X 
f̂  −i,h(z) =  Kh(z − Zj )/(n − 1). 

j=i6

Here f̂  −i,h(z) is estimator that uses all observations but the ith, so that f̂  −i,h(Zi) is  

”cross-validated.” 

Multivariate Density Estimation: 
Multivariate density estimation can be important as in example. Let z be r ×1, K(u) 

denote a pdf for a r × 1 random vector, e.g. K(u) =  Πr k(uj ) for univariate pdf k(u).j=1

Let Σ̂ the sample covariance matrix of Zi. For a bandwidth h let 

Kh(u) =  h−r det(Σ̂)−1/2K(Σ̂−1/2u/h), 
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A−1/2 is inverse square root of positive definite A. Often  K(u) =  ρ(u0u) for  some  ρ, so  

Kh(u) =  h−r det(Σ̂)−1/2ρ(u0Σ̂−1u/h). 

Multivariate kernel estimator, with scale normalization 

nX 
f̂  
h(z) =  Kh(z − Zi)/n. 

i=1 

Gaussian kernel: K(u) =  (2π)−r/2 exp(−u0u/2). 
Epanechnikov kernel: K(u) =  Cr(1 − u0u)1(u0u ≤ 1). 

The Curse of Dimensionality for Kernel Estimation 
Difficult to nonparametrically estimate pdf’s of high dimensional Zi. Need many 

observations within a small distance of a point. As dimension rises with distance fixed, 

the proportion of observations that are close shrinks very rapidly. Mathematically, with 

one dimension [0, 1] can be covered with 1/h balls of radius h, while it requires 
h
1 
r balls 

to cover [0, 1]r . Thus, if data equally likely to fall in one ball, tend to be many fewer 

data points in any one ball for high dimensional data. 

Silverman (1986, Density Estimation) famous table. Multivariate normal density at 

zero, the sample size required for MSE to be 10 percent of the density 
r 5 6 7 8 9 10 
n 768 2790 10,700 43,700 187,000 842,000 
Curse of dimensionality shows up in convergence rate. Expand again, 

f0(z − hu) =  f0(z) − h[∂f0(z)/∂z]0u 

+h2 u0[∂2f0(z + h̄(z, u)u)/∂z∂z0]u/2, 

so bias asymptotically C3h2 no matter how big r. For the variance, setting u = (z − t)/h Z Z 

Kh(z − t)2f0(t)d = h−2r K((z − t)/h)2f(t)dt Z 

= h−r K(u)2f0(z − hu)du. 

Integrating, with Σ̂ = I, Z 

E[{f̂  
h(z) − f0(z)}2]dz ≈ C1/(nhr) +  C2h4 .3 

First-order conditions for the optimal h : 0 =  −C1rn−1h−r−1 + 4C2h
3 . Solving gives 

h = C 0n−1/(r+4). Plugging back in gives Z 

E[{f̂  
h(z) − f0(z)}2]dz ≈ C 0n−4/(r+4). 
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The convergence rate declines as r increases. 

Nonparametric Regression 
Often in econometrics the object of estimation is a regression function. A classical 

formulation is Y = X 0β + ε with E[ε|X] = 0. A more direct way to write this model is 

E[Y |X] =  X 0β. 

A nonparametric version of this model, that allows for unknown functional form in the 

regression, is 

E[Y |X] =  g0(X), 

where g0(x) is an unknown function. 

Kernel Regression 
To estimate g0(x) nonparametrically, one can start with kernel density estimate and 

plug it into the formula Z 

g0(x) =  yf(y|x)dy Z Z 

= yf(y, x)dy/ f(y, x)dy 

R 
Assume that X is a scalar. Let k(u1, u2) be a bivariate kernel,  with  t k(t, u2)dt = 0. Data R ·
are (Y1, X1), ..., (Yn,Xn). Let K(u2) =  k(t, u2)dt. By change of variables t = (y − Yi)/h, Z n Z 

yf̂  
h(y, x)dy = n−1h−2 

X 
yk(

y − Yi 
,
x − Xi 

)dy
h hi=1 

n

= n−1h−1 
XZ 

(Yi + ht)k(t, 
x − Xi 

)dt 
hi=1 

n Z 

= n−1h−1 
X 

Yi k(t, 
x − Xi 

)dt 
hi=1 

n

= n−1h−1 
X 

YiK( 
x − Xi 

),
hi=1
Z n Z


f̂  
h(y, x)dy = n−1h−2 

X 
k(
y − Yi 

,
x − Xi 

)dy
h hi=1 

n

= n−1h−1 
X 

K( 
x − Xi 

). 
hi=1 

Plugging in f̂  
h(y, x) in formula  for  g0(x), ³ ´ R P n 

yf̂  
h(y, x)dy i=1 YiK x−

h
Xi 

gbh(x) =  R = P ³ ´ . 
f̂  
h(y, x)dy i

n 
=1 K x−

h
Xi 
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Also, kernel regression estimator ĝ(x) just defined by second equality. 

This regression estimator is a weighted average, with ³ ´ 
n x−XiX K 

ĝh(x) =  wi
h(x)Yi, wi

h(x) =  P ³h ´ 
i=1 

n
j=1 K x−

h

Xj 

P 
By construction, n

i=1 wi
h(x) = 1, while wi

h(x) is nonnegative by K(u) being nonneg­

ative. For symmetric K(u) with a unique mode at  u = 0, more weight will be given 

to observations with Xi that is closer to x. Bandwidth h controls how fast the weights 

decline. As h declines, more weight given closer observations. Reduces bias but increases 

variance. 

For multivariate X, formula is the same, with K(u) replaced by multivariate kernel, 

such as 

K(u) = det(Σ̂)−1/2k(Σ̂−1/2 u) 

for some kernel k(u). Consistency and convergence rate results are similar. Details 

are not reported here because the calculations are complicated by the ratio form of the 

estimator. Bandwidth choice below. 

Series Regression 
Another approach to nonparametric regression flexible functional forms with complete 

flexibility by letting the number of terms grow with sample size. Think of approximating PK g0(x) by linear combination j=1 pjK(x)βj of approximating functions pjK(x), e.g. poly­

nomials or splines. Estimator of g0(x) is predicted value from regressing Yi on pK(Xi) 

for pK(x) = (p1K(x), ..., pKK(x))
0. Consistent as K grows with n. 

Let Y = (Y1, ..., Yn)0 and P = [P K(X1), ..., P K(Xn)]
0. Then  

ĝ(x) =  p K(x)0β,ˆ β̂ = (P 0P )−P 0Y, 

A− denotes generalized inverse, AA−A = A. Different than kernal; global fit rather than  

local average. 

Examples: 

Power series: x scalar 

pjK(x) =  xj−1 , (j = 1, 2, ...) 

pK(x)0β is a polynomial. Such approximations good for global approximation of smooth 

functions. Not when most variation in narrow range or when jump or kink. Using 

orthogonal polynomials with respect to density can mitigate multicollinearity. 

Regression splines: x is scalar, 

pjK(x) =  xj−1 , (j = 1, 2, 3, 4), 

pjK(x) = 1(x > cj−4,K)(x − cj−4,K)3 , (j = 5, ..., K). 
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The c1, ..., cK−4 are “knots,” pK (x)0β is cubic in between cjK , twice continuously differ­

entiable everywhere. Picks up local variation but still global fit. Need to place knots. 

B-splines can mitigate multi-collinearity. 

Extend both to multivariate case by including products of individual components. 

Convergence Rate for Series Regression 
Depends on approximation rate, i.e. bias.


¯
Assumption A: There exists γ >  0, βK , and C such that 

{E[{g0(Xi) − p K (Xi)
0β̄K }2]}1/2 ≤ CK−γ . 

Comes from approximation theory. For power series, Xi in a compact set, g0(x) is  

continuously differentiable of order s, then  γ = s/r. For splines, γ = min{4, s}/r. For  

multivariate, approximation depends on the order of the included terms (e.g. on power) 

which grows more slowly with K when x is higher dimensional. 

Proposition 3: If Assumption A is satisfied and V ar(Yi|Xi) ≤ ∆ then 

E[{ĝK (Xi) − g0(Xi)}2] ≤ ∆K/n + C2K−2γ . 

Proof: Let 

Q = P (P 0P )−P 0, ĝ = (ĝ(X1), ..., ĝ(Xn))
0 = QY, 

g0 = (g0(X1), ..., g0(Xn))
0 , ε  = Y − g0, ḡ = Pβ̄K . 

Q idempotent, so I−Q idempotent, hence has eigenvalues that are zero or one. Therefore, 

by Assumption A, 

E [(g0 − ḡ) (I − Q)(g0 − ḡ)]h i 
≤ E (h g0 − ḡ)0 (g0 − ḡ) i 
≤ nE {g0(Xi) − p K (Xi)

0β̄K }2 

≤ CnK−2γ . 

Also, for X = (X1, ...,Xn), by independence and iterated expectations, for i = j,6

E[εiεj |X] =  E[εiεj|Xi,Xj] 

= E[εiE[εj|Xi,Xj, εi]|Xi,Xj ] 

= E[εiE[εj|Xj ]|Xi, Xj ] = 0. 

Then for Λii = V ar(Yi|Xi) and  Λ = diag(Λ11, ..., Λnn) we have  E[εε0|X] =  Λ. It follows 

that for tr(A) the trace of a square matrix A, by  rank(Q) ≤ K, 
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E [ε0Qε|X] =  tr (QE [εε0|X]) = tr(QΛ) 

= tr(QΛQ) ≤ ∆ tr(Q) ≤ ∆K. 

Then by iterated expectations, E[ε0Qε] ≤ CK. Also,  

nX 
{ĝ(Xi) − g0(Xi)}2 

i=1

= (ĝ − g0)0(ĝ − g0) 

= (Qε − (I − Q)g0)0(Qε − (I − Q)g0) 

= ε0Qε + g0 (I − Q)g00

= ε0Qε + (g0 − ḡ)0(I − Q)(g0 − ḡ). 

Then by i.i.d. observations, 

E[{ĝ(Xi) − g0(Xi)}2] 
= E[(ĝi − g0i)2] 

= E[(ĝ − g0)0(ĝ − g0)]/n 
K ≤ ∆ 
n 
+ C2K−2γ . 

Choosing Bandwidth or Number of Terms 
Data based choice operationalizes complete flexibility. Number of terms or bandwidth 

adjusts. Cross-validation is common. Let ĝ−i,h(Xi) and  ̂g−i,K (Xi) be predicted values for 

ith observation using all the others, for kernel and series respectively. ³ ´ P Xi−Xj 
j=i Yj K 

h 
ĝ−i,h(Xi) =  P	

6 ³ ´ , 
j=6 i K Xi−

h

Xj 

ĝ−i,K (Xi) =  Yi − 
1 − P K (

Y

X
i

i

− 
)0(

ĝ

P 
K 
0
(

P

X

)
i

−
) 
P K (Xi)

, 

Second equality by recursive residuals. Criteria are 

nX 
CV̂ (h) =  v(Xi)[Yi − ĝ−i,h(Xi)]

2 , 
i=1 
nX 

CV̂ (K) =  [Yi − ĝ−i,K (Xi)]
2 , 

i=1 

v(x) is a weight function, equal to zero near support boundaryi
minmize. 
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(weighted) sample MSE is 
nX 

MSE(h) =  v(Xi){ĝh(Xi) − g0(Xi)}2/n 
i=1 

Cross-validation criteria optimal, 

minh MSE(h) p

MSE(ĥ) 
−→ 1. 

Series too. ĥ converges slowly. 

Another Empirical Example: 

Hausman and Newey (1995, Nonparametric Estimation of Exact Consumers Surplus, 

Econometrica), kernel and series estimates, Y is log of gasoline purchased, function of 

price, income, and time and location dummies. Six cross-sections of individuals from 

Energy Department, total of 18,109 observations. Cross-validation criteria are 

Kernel Spline Power 
h CV Knots CV Order CV 

1.6 
1.9 
2.0 
2.1 

4621 
4516 
4508 
4700 

1 
2 
3 
4 
5 
6 
7 
8 
9 

4546 
4543 
4546 
4551 
4545 
4552 
4546 
4551 
4552 

1 
2 
3 
4 
5 
6 
7 
8 
9 

4534 
4539 
4512 
4505 
4507 
4507 
4500 
4493 
4494 

Locally Linear Regression: 

There is another local method, locally linear regression, that is thought to be superior 

to kernel regression. It is based on a locally fitting a line rather than a constant. 

Unlike kernel regression, locally linear estimation would have no bias if the true model 

were linear. In general, locally linear estimation removes a bias term from the kernel 

estimator, that makes it have better behavior near the boundary of the x’s and smaller 

MSE everywhere. 

To describe this estimator, let Kh(u) =  h−rK(u/h) as before. Consider the estimator 

ĝ(x) given by the solution to 
nX 

min (Yi − g − (x − Xi)
0β)2Kh(x − Xi). 

g,β 
i=1 
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That is ĝ(x) is the constant term in a weighted least squares regression of Yi on (1, x−Xi), 

with weights Kh(x− Xi). For ⎞⎛⎞⎛ 
Y1 1 (x− X1)

0 

. . ⎜⎜⎝

⎟⎟⎠


⎜⎜⎝

⎟⎟⎠
X̃ =
.
Y
 =
 .
.
 . .
. .
,


Yn 1 (x− Xn)
0 

W = diag  (Kh(x− X1) , ...,Kh(x− Xn)) 

and e1 a (r + 1)  × 1 vector with 1 in first position and zeros elsewhere, we have 

ĝ(x) =  e01(X̃
0WX̃)−1X̃ 0WY.  

This estimator depends on x both through the weights Kh(x − Xi) and through the 

regressors x− Xi. 

This estimator is a locally linear fit of the data. It runs a regression with weights that 

are smaller for observations that are farther from x. In contrast, the kernel regression 

estimator solves this same minimization problem but with β constrained to be zero, i.e., 

kernel regression minimizes 
nX 
(Yi − g)2Kh(x− Xi) 

i=1 

Removing the constraint β = 0 leads to lower bias without increasing variance when g0(x) 

is twice differentiable. It is also of interest to note that β̂ from the above minimization 

problem estimates the gradient ∂g0(x)/∂x. 

Like kernel regression, this estimator can be interpreted as a weighted average of the 

Yi observations, though the weights are a bit more complicated. Let 
n n nX X X 

S0 = Kh(x− Xi), S1 = Kh(x− Xi)(x− Xi), S2 = Kh(x− Xi)(x− Xi)(x− Xi)
0 

i=1 i=1 i=1 
n nX X 

m̂0 = Kh(x− Xi)Yi, m̂1 = Kh(x− Xi)(x− Xi)Yi. 
i=1 i=1 

Then, by the usual partitioned inverse formula " #−1 Ã ! 

ĝ(x) =  e1
0 S0 S1

0 m̂0 = (S0 − S1
0S2
−1S1)

−1(m̂0 − S1
0S2
−1 m̂1)S1 S2 m̂1 P n 

= Pi=1 aiYi , ai = Kh(x− Xi)[1 − S0S2
−1(x− Xi)]n 1

i=1 ai 

It is straightforward though a little involved to find asymptotic approximations to the 

MSE. For simplicity we do this for scalar x case. Note that for g0 = (g0(X1), ..., g0(Xn))
0 

ĝ(x) − g0(x) =  e0 (X̃ 0WX̃)−1X̃ 0W (Y − g0) +  e0(X̃ 0WX̃)−1X̃ 0Wg0 − g0(x).1
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Then for Σ = diag(σ2(X1), ..., σ
2(Xn)), h i 

E {ĝ(x) − g0(x)} 2 | X1, ...,Xn = e0( n 
X̃ 0WX̃)−1X̃ 0W ΣWX̃(X̃ 0WX̃o)2 

−1 e 

+ e0(X̃ 0WX̃)−1X̃ 0Wg0 − g0(x) 

An asymptotic approximation to MSE is obtained by taking the limit as n grows. Note 

that we have 
1 nX 

n−1h−jSj = Kh(x − Xi)[(x − Xi)/h]
j 

n i=1 

Then, by the change of variables u = (x − Xi)/h, h i Z 

E n−1h−j Sj = E[Kh(x− Xi) {(x − Xi)/h}j ] =  K(u)ujf0(x− hu)du = μjf0(x)+o(1). 

R 
for μj = K(u)uj du and h −→ 0. Also, ³ ´ h i2j Z 

var n−1h−j Sj ≤ n−1E Kh(x − Xi)
2[(x − Xi)/h ] ≤ n−1h−1 K(u)2 u 2jf0(x − hu)du 

≤ Cn−1h−1 −→ 0 

for nh −→ ∞ . Therefore, for h −→ 0 and  nh −→ ∞ 

n−1h−j Sj = μj f0(x) +  op(1). 

Now let H = diag(1, h). Then by μ0 = 1  and  μ1 = 0  we  have  " # " # 

n−1H−1 ˜ W ˜ = n−1 S0 h−1S1 1 0  
X 0 XH−1 

h−1S1 h−2S2 
= f0(x) 0 

+ op(1). μ2 R 
Next let νj = K(u)2uj du.  then by a similar argument we have  

X 
h 
1 n

Kh(x − Xi)
2 [(x − Xi)/h]

j σ2(Xi) =  νj f0(x)σ2(x) +  op(1). 
n i=1 

It follows by ν1 = 0  that  " # 

n−1hH−1X̃ 0W ΣW ˜ = f0(x)σ2(x) 
ν
0 
0 

ν
0 
2 

(1).XH−1 + op

Then we have, for the variance term, by H−1e1 = e1, 

e01(X̃
0WX̃)−1X̃ 0W ΣWX̃(X̃ 0WX̃)−1 e1 Ã !−1 Ã !−1 

H−1X̃ 0W ˜ hH−1 ˜ XH−1 X W ˜XH−1 X 0W ΣW ˜ H−1 ˜ 0 XH−1 

= n−1h−1 e01H
−1 H−1 e1 

n n n ⎡⎛ " # # " # ⎞ ⎤ 

= n−1h−1 ⎣⎝e0 1 0  
−1 " 

ν0 ν1 1 0  
−1 

e1⎠ σ
2(x)

+ op(1)⎦ .1 0 μ2 ν1 ν2 0 μ2 f(x) 
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It then follows that Ã ! 

e01(X̃
0WX̃)−1X̃ 0W ΣWX̃(X̃ 0WX̃)−1 e1 = n−1h−1 ν0 

σ2(x)
+ op(1). 

f(x) 

For the bias consider an expansion 

g(Xi) =  g0(x) +  g0 (x)(Xi − x) +
1 
g00(x)(Xi − x)2 +

1 
g000(X̄i)(Xi − x)3 .0 0 02 6

Let ri = g0(Xi) − g0(x) − [dg0(x)/dx] (Xi − x). Then by the form of X̃ we have 

g = (g0(X1), ..., g0(Xn))
0 = g0(x)We1 − g0 (x)We2 + r0

It follows by e01e2 = 0 that the bias term is 

e0 ( ˜ 0W ˜ X 0Wg  − g0(x) =  e0 ( ˜ 0W ˜ X 0 Xe1g0(x) − g0(x)X X)−1 ˜ X X)−1 ˜ W ˜1 1

+e1
0 X 0 X 0 Xe2g0

0 (x) +  e1
0 X 0 X 0Wr  = e1

0 X 0 X 0Wr.  ( ˜ WX̃)−1 ˜ W ˜ ( ˜ WX̃)−1 ˜ ( ˜ WX̃)−1 ˜

Recall that 

n−1h−j Sj = μj f0(x) +  op(1). 

Therefore, by μ3 = 0, 

n−1h−2H−1X̃ 0W ((x − X1)
2 , ..., (x − Xn)

2)0 
1 
g0
00(x) Ã ! Ã ! 2

n−1h−2S2 1 μ2 1 
= 

n−1h−3S3 2
g0
00(x) =  f0(x) 0 2

g0
00(x) +  op(1). 

Assuming that g0
000(X̄i) is bounded, bounded ° ° ³ ³ ´´ ° ° ° )3 ¯ 0° °n−1h−2H−1X̃ 0W (x − X1)

3 g0
000(X̄1), ..., (x − Xn g000 Xn0 ° X 

3 ≤ C max 

(
n−1h−2 

i 

Kh(x − Xi) |x − Xi| , n−1h−2S4
) 

−→ 0. 

Therefore, we have 

e01( X̃
0W X̃)−1 X̃ 0Wr  = h2 e01H

−1 

Ã 
H−1 X̃ 0W X̃H−1 

!−1 
h−2H−1 X̃ 0Wr  

n n 

= 
h2 

2 

⎡ ⎣g000 (x)e
0
1 

Ã 
1 0  
0 μ2 

!−1 Ã 
μ2 

μ3 

! 

+ op(1) 

⎤ ⎦ 

= 
h2 

2 
[g000 (x)μ2 + op(1)]. 

Cite as: Whitney Newey, course materials for 14.386 New Econometric Methods, Spring 2007.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology.
Downloaded on [DD Month YYYY].



Exercise: Apply analogous calculation to show kernel regression bias is Ã ! 

μ2h
2 

2

1 
g0
00(x) +  g0

0 (x) 
f

f
0

0

0

(

(

x

x

)

) 

Notice bias is zero if function is linear. 

Combining the bias and variance expression, we have the following form for asymptotic 

MSE: 
1 σ2(x) h4 

nh
ν0 
f0(x)

+ 
4 
g0
00(x)2μ2

2 . 

In contrast, the kernel MSE is 

1 σ2(x) h4 
" 

f0
0(x) 

#2 

nh
ν0 
f0(x)

+ 
4 

g0
00(x) + 2g0

0 (x)
f0(x) 

μ2
2 . 

Bias will be much bigger near boundary of the support where f0
0(x)/f0(x) is large. For 

example, if f0(x) is approximately  xα for x >  0 near zero, then f0
0(x)/f0(x) grows  like  

1/x as x gets close to zero. Thus, locally linear has smaller boundary bias. Also, locally 

linear has no bias if g0(x) is linear but  kernel  obviously does.  

Simple bandwidth choice method is to take expected value of MSE. 

One could use a plug in method to minimize integrated asymptotic MSE, integrated 

over ω(x)f0(x) for  some  weight.  

Reducing the Curse of Dimensionality 

Idea: Restrict form of regression so that it only depends on low dimensional com­

ponents. Additive model has regression additive in lower dimension components. In­

dex model has regression depending only on a linear combination. Additive model, 

X = (x1, ..., xr)0, 

rX 
E[Y |X] =  

j=1 

gj0(Xj ). 

One dimensional rate. Series estimator is simplest. Restricts approximating functions to 

depend on only on component. Scalar u and pcL(u), c  = 1, ..., L  approximating functions, 

pL(u) = (p1L(u), ..., pLL(u))
0 , K  = Lr + 1  let  pK (x) = (1, pL(x1)

0, ..., pL(xr)
0)0. Regress  

Yi on pK (Xi). For β̂0 equal to constant and β̂j , (j = 1, ..., r) the  coefficient vector for 

pL(xj )/ 
rX 

ĝ(X) =  β̂0 + p L(xj)0β̂j . 
j=1 
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Proposition 4: If Assumption A is satisfied with g0(X) equal to each component 

gj0(Xj) and pK(X) replaced by (1, pL(Xj)
0)0, where the constants C, γ do not depend on 

j, and V ar(Y |X) ≤ ∆ then 

E[{ĝK(Xi) − g0(Xi)}2] 
≤ ∆/n + r[∆L/n + C2(L + 1)−2γ]. 

Proof: Let p̃L(u) =  (1, pL(u)0)0. By Assumption A, is C and γ so for each j and L is 

a (L + 1)  × 1 vector  β̃jL = (β̃jL , β̃2 
jL0)0,1 

E[{gj0(Xj) − p̃L(Xj)
0β̃jL}2] ≤ C2(L + 1)−2γ . 

Let β̄ = (  
P 

j
r 
=1 β̃1 

jL , β̃2
1L0, ...,  β̃2 

rL0)0, so that 

E[{g(X) − p K(X)0β̄}2] 
rX 

= E[{gj0(Xj) − p̃L(Xj)
0β̃jL}2] 

j=1 

≤ rC2(L + 1)−2γ . 

Then as in the proof of Propostion 3, we have 

E[{ĝK(X) − g0(X)}2] 
≤ ∆K/n + rC2(L + 1)−2γ 

= ∆/n + r[∆L/n + C2(L + 1)−2γ]. Q.E.D. 

Convergence rate does not depend on r, although does affect. Here r could even grow 

with sample size at some power of n. Additivity condition satisfied in Hausman and 

Newey (1995). 

Semiparametric Models 

Data: Z1, Z2, ...  i.i.d. 

Model: F a set  of  pdfs.  

Correct specification: pdf f0 of Zi in F . 
Semiparametric model: F has parametric θ and nonparametric components. 

Ex: Linear model E[Y |X] =  X 0β0; parametric component is β, everything else non­

parametric. 

Ex: Probit, Y ∈ {0, 1}, Pr(Y = 1|X) =  Φ(X 0β0) is parametric component, nonpara­

metric component is distribution of X. 
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Binary Choice with Unknown Disturbance Distribution: Z = (Y,X), 

v(x, β) a known function, 

Y = 1(Y ∗ > 0), Y  ∗ = v(X, β0) − ε, ε independent of X, 

This model implies 

Pr(Y = 1|X) =  G(v(X,β0)), 

Parameter β, everything else, including G(u), is nonparametric. The v(x, β) notation 

allows location and scale normalization, e.g. v(x, β) =  x1 + x02β, x = (x1, x2
0 )0, x1 scalar. 

Censored Regression with Unknown Disturbance Distribution: Z = 

(Y,X), 

Y = max{0, Y  ∗}, Y  ∗ = X 0β0 + ε, ε independent of X; 

Parameter β, everything else, including distribution of ε, is nonparametric. 

Binary choice and censored regression are limited dependent variable models. Semi-

parametric models are important here because misspecifying the distribution of the dis­

turbances leads to inconsistency of MLE. 

Partially Linear Regression: Z = (Y,X,W ), 

E[Y |X,W ] =  X 0β0 + g0(W ). 

Parameter β, everything else nonparametric, including additive component of regression. 

Can help with curse of dimensionality, with covariates X entering parametrically. In 

Hausman and Newey (1995) W is log income and log price, and X includes about 20 

time and location dummies. X may be variable of interest and  g0(Z) some covariates, 

e.g. sample selection. 

Index Regression: Z = (Y,X), v(x, β) a known function, 

E[Y |X] =  τ(v(X,β0)), 

where the function τ(·) is unknown. Binary choice model has E[Y |X] =  Pr(Y = 1|X) =  

τ(v(X,β0)), with τ( ). If allow conditional distribution of ε given X to depend (only) on ·
v(X,β0), then binary choice model becomes index model. 

Semiparametric Estimators 
Estimators of β0. Two kinds; do and do not require nonparametric estimation. Really 

model specific, but beyond scope to say why. One general kind of estimator: 
nX 

β̂ = arg  min q(Zi, β)/n, β0 = arg  minE[q(Zi, β)], 
β∈B

i=1 
β∈B 
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B set of parmaeter values. Extremum estimator. Clever choices of q(Z, β) in some  

semiparametric models. 

Conditional median estimators use two facts: 

Fact 1: The median of a monotonic transformation is transformation of the median. 

Fact 2: The median minimizes the expected absloute deviation, i.e. med(Y |X) min­
imizes E[|Y − m(X)|] over functions m(·) of  X. 

Binary Choice: v(x, β) include constant, ε has zero median, then med(Y ∗|X) =  

v(X,β0). 1(y >  0) is montonic tranformation, Fact 1 implies med(Y |X) = 1(med(Y ∗|X) > 

0) = 1(v(X, β0) > 0). Fact 2, β0 minimizes E[|y − 1(v(x, β) > 0)|], so 
nX 

β̂ = arg  min Y − 1(v(Xi, β) > 0) ]
β

i=1 

| |

Maximum score estimator of Manski (1977). Only requires med(Y ∗|X) =  v(X, β0); allows 

for heteroskedasticity. 

Censored Regression: x0β includes a constant, ε has median zero, then med(Y ∗|X) =  

X 0β0. max{0, y} is a monotonic transformation, so Fact 1 says med(Y |X) =  max{0,X 0β0}. 
By Fact 2, β0 minimizes E[|y − max{0, x0β}|], so 

nX 
β̂ = arg  min Yi − max{0, Xi

0
β

i=1 

| β}|. 

Censored least absolute deviations estimator of Powell (1984). Only requires med(Y ∗|X) =  

X 0β, allows for heteroskedasticity. 

Generalize: med(Y ∗|X) =  v(X, β0) and  Y = T (Y ∗) for monotonic transformation 

T (y). By Fact 1 med(Y |X) =  T (v(X, β0)). Use Fact 2 to form 

nX 
β̂ = arg  min Yi − T (v(Xi, β)) . 

β
i=1 

| |

Global minimization, rather than solving first-order conditions, is important. For 

maximum score no first-order conditions. For censored LAD first-order conditions are 

zero whenever x0iβ <  0 for  all (i = 1, ..., n). 

Approach provides estimates parameters and conditional median predictions, not con­

ditional means. Generalizes to conditional quantiles. 

Consistency and Asymptotic Normality of Minimization Esti-
mators 
A consistency result: 
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Proposition 5: If i) E[q(Z, β)] has a unique minimum at β0, ii) β0 ∈ B and B is 

compact; iii) q(Z, β) is continuous at β with probability one; iv) E[supβ∈B |q(Zi, β)|] < ∞ ; 

then 
nX 

β̂ = arg  min q(Zi, β) 
p

β∈B
i=1 

−→ β0. 

Well known. Allows for q(Z, β) to be discontinuous. Binary choice model above, as­

sumption iii) satisfied if v(x, β) =  x0β and Xi includes continuously distributed regressor 

with corresponding component of β bounded away from zero on B. All the conditions 

are straightforward to check. 

An asymptotic normality result, Van der Vaart (1995). 
p

Proposition 6: If β̂ −→ β0, β0 is in the interior of B, and  i)  E[q(Zi, β)] is twice 

differentiable at β0 with nonsingular Hessian H; ii)  there  is  d(z) such that E[d(Z)2] exists 

and for all β, β̃ ∈ B, |q(Z, β̃) − q(Z, β)| ≤ d(Z)kβ̃ − βk; iii) with probability one q(Z, β) 
is differentiable at β0 with derivative m(Z), then 

n 1/2(β̂ − β0) 
d 0]H−1).−→ N(0,H−1E[m(Z)m(Z)

Straightforward to check for censored LAD. Do not hold for maximum score. Instead 
1/3( ˆ

d 
n .β − β0) −→ 

Estimators with Nonparametric Components 
Some models require use of nonparametric estimators. Include the partially linear 

and index regressions. We discuss least squares estimation when there is a nonpara­

metric component in the regression. Basic idea is to ”concentrate out” nonparametric 

component, to find a ”profile” squared residual function, by substituting for nonpara­

metric component an estimator. 

Partially linear model as in Robinson (1988). Know E[Y |X,W ] minimizes E[(Y − 

G(X,W ))2] over  G, so that  

(β0, g0( )) = arg min 0 2].·
β,g( ) 

E[{Yi − Xiβ − g(W )}
·

Do minimization in two steps. First solve for minimum over g for fixed β, substituting 

that minimum into the objective function, then minimize β. The minimizer over g for 

fixed β is 

E[Yi − Xi
0β|Z] =  E[Yi|Zi] − E[Xi|Zi]

0β. 

Substituting 

β0 = arg  minE[{Yi − E[Yi Zi] − (Xi − E[Xi Zi])
0β}2]. 

β 
| |
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Estimate using Ê[Yi|Zi] and  Ê[Xi|Zi] and replacing the outside expectation by a sample 

average, 
nX 

β̂ = arg  min {Yi − Ê[Yi Zi] − (Xi − Ê[Xi Zi])
0β}2/n, 

β
i=1

| |

Least squares of Yi − Ê[Yi|Zi] on  Xi − Ê[Xi|Zi]. Kernel or series fine. 

Index regression, as in Ichimura (1993). By E[Y |X] =  τ0(v(X,β0)), 

(β0, τ0( )) = arg min E[{Yi − τ(v(Xi, β))}2].·
β,τ( )·

Concentrating out the τ , τ(X,β) =  E[Y |v(X,β)]. Let τ̂(Xi, β) a nonparametric estimator 

of E[Y |v(X, β)], estimator is 

nX 
β̂ = arg  min {Yi − τ̂(Xi, β)}2 . 

β 
i=1

Generalize to log-likelihood and other objective functions. Let q(z, β, η) depend  

on parametric component β and nonparametric component η. True values minimize 

E[q(Z, β, η)], Estimator η̂(β) of  η(β) = arg  minη E[q(Z, β, η)], 

nX 
β̂ = arg  min q(Zi, β,  η̂(β)). 

β 
i=1 

Asymptotic theory difficult because of presence of nonparametric estimator. Know that 

often n−1/2 rate, asymptotically normal, and even estimation of η(β) does not  affect 

asymptotic distribution. 

Other estimators that depend on nonparametric estimators may have affect on lim­

iting distribution, e.g. average derivative estimator of Stoker (1987) and Powell, Stock, 

and Stoker (1989). 

Joint maximization possible but can be difficult because of need to smooth. Cannot 

allow η̂(β) to be  n-dimensional. 

An empirical example is Hausman and Newey (1995). Graphs are actually those for 

ĝ(w) from a partially linear model. 

Example of theory, series estimator of partially linear model. Let pK(w) be  a  K × 1 

vector of approximating functions, such as power series or splines. Also let 

Y = (Y1, ..., Yn)
0,X  = [X1, ..., Xn]

0, 

P = [p K(W1), ..., p  K(Wn)]
0, Q = P (P 0P )−P 0, 

Let Ê[Yi|Wi] =  pK(Wi)
0(P 0P )−P 0Y and Ê[Xi

0|Wi] =  pK(Wi)
0(P 0P )−P 0X be series esti­

mators. Residuals are (I − Q)Y and (I − Q)X, respectively, so by I − Q idempotent, 

β̂ = (X 0(I − Q)X)−1X 0(I − Q)Y. 
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Here β̂ is also least squares regression of Y on X and P . Result  on  n1/2-consistency and 

asymptotic normality. 

Proposition 7: If i) Yi and Xi have finite second moments; ii) H = E[V ar(Xi|Wi)] 

is nonsingular; iii) V ar(Yi|Xi,Wi) and V ar(Xi|Wi) are bounded; iv) there are C, γg, and 

γx such that for every K there are αK and βK with E[{g0(Wi) − αK p
K (Wi)}2] ≤ K−γg 

and E[kE[X| 0 K (Wi)k2] ≤ CK−2γx v) K/n −→ 0 and n1/2K−(γg+γx)Wi]− βK p −→ 0, then 

for Σ = E[V ar(Yi|Xi,Wi){Xi − E[Xi|Wi]}{Xi − E[Xi|Wi]}0], 

1/2( ˆ
d 

n β − β0) −→ N(0, H−1ΣH−1). 

Condition ii) is an identification condition that is essentially no perfect multicollinear­

ity between Xi and any function of Wi. Intuitively, if one or more of the Xi variables 

were functions of Wi then we could not separately identify g0(Wi) and  the coefficients on 

those variables. Furthermore, we know that necessary and sufficient conditions for identi­

fication of β from least squares objective function where g(Z) has been partialled out are 

that Xi − E[Xi|Wi] have a nonsingular second moment matrix. By iterated expectations 

that second moment matrix is 

E[(Xi − E[Xi|Wi])(Xi − E[Xi|Wi])
0] 

= E[E[{(Xi − E[Xi|Wi])(Xi − E[Xi|Wi])
0}|Wi]] = H. 

Thus, condition ii) is the same as the usual identification condition for least squares after 

partialling out the nonparametric component. 

The requirement K/n −→ 0 is a small variance condition and n1/2K−(γg +γx) −→ 0 a  

small bias condition. The bias here is of order K−(γg+γx), which is of smaller order than 

just the bias in approximating g0(z) (which is only  K−γg ). Indeed, the order of the bias of 

β̂ is the product of the biases from approximating g0(z) and from approximating E[x|z]. 
So, one sufficient condition is that the bias in each of the nonparametric estimates vanish 

faster than n−1/4 . This faster than n−1/4 condition is common to many semiparametric 

estimators. 

Some amount of smoothness is required for root-n consistency. Existence of K sat­

isfying the rate condition iii) requires that γg + γx > r/2. An analogous smoothness 

requirement (or even a stronger one) is generally needed for root-n consistency of any 

semiparametric estimator that requires estimation of a nonparametric component. 
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Proof of Propostion 7: For simplicity we give the proof when Xi is scalar. Let 

M = I − Q, Z̃ = (W1, ...,Wn)
0, 

X̄ = [E[X1|W1], ..., E[Xn|Wn]]
0, 

¯V = X − X, g0 = (g0(z1), ..., g0(zn))
0, 

ε = Y − Xβ0 − g0. 

Substituting Y = Xβ0 + g0 + ε in the formula for β,ˆ subtracting β0, and multiplying by 

n1/2 gives 

n 1/2(β̂ − β0) 

= (X 0MX/n)−1(X 0Mg0/n
1/2 + X 0Mε/n1/2) 

p
By the law of large numbers V 0V/n  −→ H. Also, similarly to the proof of Proposition 3, 

V 0QV/n = Op(K/n), X̄ 0M ¯ (K−2γx ),X/n = Op

g0
0Mg0/n = Op(K

−2γg ). 

p
Then V 0MV/n  −→ H and 

M ¯

≤ (V 0MV/n)1/2(X̄ M ¯ −→ 0, 

|V 0 X/n|	
p0 X/n)1/2 

so that 

X 0MX/n 	 = (X̄ + V )0M(X̄ + V )/n 

= X̄ M ¯0 X/n 
p

+2X̄ 0MV/n  + V 0MV/n  −→ H. 

Next, similarly to the proof of Proposition 3 we have E[V V  0|W ] ≤ CIn and E[εε0|W,X] ≤ 

CIn. Then  

E[{V 0Mg0/n
1/2}2] =  E[g0

0ME[V V  0|W ]Mg0]/n 

≤ CE[g0
0Mg0]/n 

= O(K−2γg ) −→ 0. 

|X̄ 0Mg/n1/2|2 

≤ n(X̄ 0MX/n¯ )(g0
0Mg0/n) 

p
= Op(nK

−2γx−2γg ) −→ 0, 
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¯ p
so that X 0Mg0/n

1/2 = X 0Mg0/n
1/2 + V 0Mg0/n

1/2 −→ 0. Also, 

E[{X̄ 0Mε/n1/2}2] =  E[X̄ 0ME[εε0|X,W ]MX̄]/n 

≤ CE[X̄ 0MX̄]/n 

= O(K−2γx ) −→ 0, 

E[{V 0Qε/n1/2}2] =  E[V 0QE[εε0|X,W ]QV ]/n 

≤ CE[V 0QV ]/n 

= O(K/n) −→ 0, 

d
and by the central limit theorem, V 0ε/n1/2 −→ N(0, Σ). Therefore, 

X 0Mε/n1/2 = X̄ 0Mε/n1/2 

+V 0ε/n1/2 − V 0Qε/n1/2 d −→ N(0, Σ). 

Then by the continuous mapping and Slutzky theorems it follows that 

n 1/2(β̂ − β0) = (H + op(1))−1[V 0ε/n1/2 + op(1)]] 
d −→ H−1N(0, Σ) =  N(0, H−1ΣH−1). 
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