
GENERALIZED METHOD OF MOMENTS


Whitney K. Newey


MIT


October 2007


THE GMM ESTIMATOR: The idea is to choose estimates of the parameters 

by setting sample moments to be close to population counterparts. To describe the 

underlying moment model and the GMM estimator, let β denote a p×1 parameter vector, 

wi a data observation with i = 1, ..., n, where n is the sample size. Let gi(β) =  g(wi, β) 

be a m × 1 vector of functions of the data and parameters. The GMM estimator is based 

on a model where, for the true parameter value β0 the moment conditions 

E[gi(β0)] = 0 

are satisfied. 

The estimator is formed by choosing β so that the sample average of gi(β) is  close  to  

its zero population value. Let 
n

def 1 X 
ĝ(β) = gi(β) 

n i=1 

denote the sample average of gi(β). Let Â denote an m×m positive semi-definite matrix. 

The GMM estimator is given by 

β̂ = arg  min ĝ(β)0Âĝ(β). 
β 

That is β̂ is the parameter vector that minimizes the quadratic form ĝ(β)0Âĝ(β). 

The GMM estimator chooses β̂ so  the sample average  ̂g(β) is close to zero. To see 

this let kgk ̂ = 
q

Ag, which  is  a  well  defined norm as long as ˆg0 ˆ A is positive definite.A 

Then since taking the square root is a strictly monotonic transformation, and since the 

minimand of a function does not change after it is transformed, we also have 

β̂ = arg  min kĝ(β) − 0kÂ. β 
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Thus, in a norm corresponding to Â the estimator β̂ is being chosen so that the distance 

between ĝ(β) and  0 is as small  as  possible.  As  we  discuss further  below,  when  m = p, so  

there are the same number of parameters as moment functions, β̂ will be invariant to Â

asymptotically. When m > p  the choice of  Â will affect β̂. 

The acronym GMM is an abreviation for ”generalized method of moments,” refering to 

GMM being a generalization of the classical method moments. The method of moments 

is  based on knowing  the form of up to  p moments of a variable y as functions of the 

parameters, i.e. on 

E[yj] =  hj(β0), (1 ≤ j ≤ p). 

The method of moments estimator β̂ of β0 is obtained by replacing the population mo­

ments by sample moments and solving for β̂, i.e.  by solving  

n1 X 
(yi)

j = hj (β̂), (1 ≤ j ≤ p). 
n i=1 

Alternatively, for 

gi(β) = (yi − h1(β), ..., yi
p − hp(β))0, 

method of moments solves ĝ(β̂) = 0. This also means that β̂ minimizes ĝ(β)0Âĝ(β) for  

any Â, so that it is a GMM estimator. GMM is more general in allowing moment 

functions of different form than yj − hj(β) and in allowing for more moment functions i 

than parameters. 

One important setting where GMM applies is instrumental variables (IV) estimation. 

Here the model is 

yi = Xi
0β0 + εi, E[Ziεi] = 0, 

where Zi is an m × 1 vector of instrumental variables and Xi a p × 1 vector of right-hand 

side variables. The condition E[Ziεi] = 0 is often called a population ”orthogonality 

condition” or ”moment condition. ”Orthogonality” refers to the elements of Zi and εi 

being orthogonal in the expectation sense. The moment condition refers to the fact that 

the product of Zi and yi −Xi
0β has expectation zero at the true parameter. This moment 

condition motivates a GMM estimator where the moment functions are the vector of 
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products of instrumental variables and residuals, as in 

gi(β) =  Zi(yi − Xi
0β). 

The GMM estimator can then be obtained by minimizing ĝ(β)0Âĝ(β). 

Because the moment function is linear in parameters there is an explicit, closed 

form for the estimator. To describe it let Z = [Z1, ..., Zn]
0, X  = [X1, ...,Xn]

0, and 

y = (y1, ..., yn)0. In this example the sample moments are given by 

nX 
ĝ(β) =  Zi(yi − Xi

0β)/n = Z 0(y − Xβ)/n. 
i=1 

The first-order conditions for minimization of ĝ(β)0Âĝ(β) can  be  written as  

0 =  X 0 AZ 0 β) =  X 0Z ˆ 0y − X 0 AZ 0Z ˆ (y − X ̂ AZ Z ˆ Xβ.ˆ

These assuming that X 0Z ÂZ 0X is nonsingular, this equation can be solved to obtain 

ˆ AZ X)−1X 0Z ˆβ = (X 0Z ˆ 0 AZ 0y. 

This is sometimes referred to as a generalized IV estimator. It generalizes the usual two 

stage least squares estimator, where Â = (Z 0Z)−1 . 

Another example is provided by the intertemporal CAPM. Let ci be consumption 

at time i, Ri is asset return between i and i + 1,  α0 is time discount factor, u(c, γ0) 

utility function, Zi observations on variables available at time i. First-order conditions 

for utility maximization imply that moment restrictions satisfied for 

gi(β) =  Zi{Ri · α uc(ci+1, γ)/uc(ci, γ) − 1}.· 

Here GMM is nonlinear IV; residual is term in brackets. No autocorrelation because of 

one-step ahead decisions (ci+1 and Ri known at time i +1).  Empirical  Example:  Hansen  

and Singleton (1982, Econometrica), u(c, γ) =  cγ/γ (constant relative risk aversion), 

ci monthly, seasonally adjusted nondurables (or plus services), Ri from stock returns. 

Instrumental variables are 1, 2, 4, 6 lags of ci+1 and Ri. Find  γ not significantly different 
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than one, marginal rejection from overidentification test. Stock and Wright (2001) find 

weak identification. 

Another example is dynamic panel data. It is a simple model that is important 

starting point for microeconomic (e.g. firm investment) and macroeconomic (e.g. cross-

country growth) applications is 

E∗(yit|yi,t−1, yi,t−2, ..., yi0, αi) =  β0yi,t−1 + αi, 

where αi is unobserved individual effect and E∗( ) denotes a population regression. Let ·

ηit = yit − E∗(yit|yi,t−1, ..., yi0, αi). By orthogonality of residuals and regressors, 

E[yi,t−j ηit] = 0, (1 ≤ j ≤ t, t = 1, ..., T ), 

E[αiηit] = 0, (t = 1, ..., T ). 

Let ∆ denote the first difference, i.e. ∆yit = yit −yi,t−1. Note  that  ∆yit = β0∆yi,t−1+∆ηit. 

Then, by orthogonality of lagged y with current η we have 

E[yi,t−j(∆yit − β0∆yi,t−1)] = 0, (2 ≤ j ≤ t, t = 1, ..., T ). 

These are instrumental variable type moment conditions. Levels of yit lagged at least 

two period can be used as instruments for the differences. Note that there are different 

instruments for different residuals. There are also additional moment conditions that 

come from orthogonality of αi and ηit. They  are  

E[(yiT − β0yi,T −1)(∆yit − β0∆yi,t−1)] = 0, (t = 2, ..., T − 1). 

These are nonlinear. Both sets of moment conditions can be combined. To form big 

moment vector by ”stacking”. Let ⎞⎛ 
yi0 ⎜⎜⎝


⎟⎟⎠
i
t(β) =  .
. . 

yi,t−2 

(∆yit − β∆yi,t−1), (t = 2, ..., T  ),g


⎛
 ⎞


g
i
α(β) =  

⎜⎜⎝


∆yi2 − β∆yi1 
. . . 

∆yi,T −1 − β∆yi,T −2 

⎟⎟⎠
(yiT − βyi,T −1). 
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These moment functions can be combined as 

gi(β) = (gi 
2(β)0, ..., g i

T (β)0, gi
α(β)0)0. 

Here there are T (T −1)/2+(T −2) moment restrictions. Ahn and Schmidt (1995, Journal 

of Econometrics) show that the addition of the nonlinear moment condition gi
α(β) to the  

IV ones often gives substantial asymptotic efficiency improvements. 

Hahn, Hausman, Kuersteiner approach: Long differences ⎞⎛ 

gi(β) =  
⎜⎜⎜⎜⎝


yi0


yi2 − βyi1

. . . 

yi,T −1 − βyi,T −2

⎟⎟⎟⎟⎠

[yiT − yi1 − β(yi,T −1 − yi0)] 

Has better small sample properties by getting most of the information with fewer 

moment conditions. 

IDENTIFICATION: Identification is essential for understanding any estimator. 

Unless parameters are identified, no consistent estimator will exist. Here, since GMM 

estimators are based on moment conditions, we focus on identification based on the 

moment functions. The parameter value β0 will be identified if there is a unique solution 

to 

ḡ(β) = 0, ḡ(β) =  E[gi(β)]. 

If there is more than one solution to these moment conditions then the parameter is not 

identified from the moment conditions. 

One important necessary order condition for identification is that m ≥ p. When  

m <  p,  i.e. there are fewer equations to solve than parameters. there will typically be 

multiple solutions to the moment conditions, so that β0 is not identified from the moment 

conditions. In the instrumental variables case, this is the well known order condition that 

there be more instrumental variables than right hand side variables. 

When the moments are linear in the parameters then there is a simple rank condition 

that is necessary and sufficient for identification. Suppose that gi(β) is linear in  β and let 

Gi = ∂gi(β)/∂β (which does not depend on β by linearity in β). Note that by linearity 
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gi(β) =  gi(β0) +  Gi(β − β0). The moment condition is 

0 = ḡ(β) =  G(β − β0), G  = E[Gi] 

The solution to this moment condtion occurs only at β0 if and only if 

rank(G) =  p. 

If rank(G) =  p then the only solution to this equation is β − β0 = 0, i.e. β = β0. If 

rank(G) < p  then there is c = 0  such  that  Gc = 0, so that for β = β0 + c = β0,6 6

ḡ(β) =  Gc = 0. 

For IV G = −E[ZiXi
0] so  that  rank(G) =  p is one form of the usual rank condition 

for identification in the linear IV seeting, that the expected cross-product matrix of 

instrumental variables and right-hand side variables have rank equal to the number of 

right-hand side variables. 

In the general nonlinear case it is difficult to specify conditions for uniqueness of 

the solution to ḡ(β) = 0. Global conditions for unique solutions to nonlinear equations 

are not well developed, although there has been some progress recently. Conditions 

for local identification are more straightforward. In general let G = E[∂gi(β0)/∂β]. 

Then, assuming ḡ(β) is continuously differentiable in a neighborhood of β0 the condition 

rank(G) =  p will be sufficient for local identification. That is, rank(G) =  p implies that 

there exists a neighborhood of β0 such that β0 is the unique solution to ḡ(β) for  all  β in 

that neighborhood. 

Exact identification refers the case where there are exactly as many moment conditions 

as parameters, i.e. m = p. For IV there would be exactly as many instruments as right-

hand side variables. Here the GMM estimator will satisfy ĝ(β̂) = 0 asymptotically. 

When there is the same number of equations as unknowns, one can generally solve the 

equations, so a solution to ĝ(β) = 0 will exist asymptotically. The proof of this statement 

(due to McFadden) makes use of the first-order conditions for GMM, which are 

h i
0 =  ∂ĝ(β̂)/∂β 

0 
Âĝ(β̂). 
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The regularity conditions will require that both ∂ĝ(β̂)/∂β and Â are nonsingular with 

probability approaching one (w.p.a.1), so the first-order conditions imply ĝ(β̂) =  0  

w.p.a.1. This will be true whatever the weight matrix, so that β̂ will be invariant to 

the form of A.ˆ

Overidentification refers to the case where there are more moment conditions than 

parameters, i.e. m > p. For IV this will mean more instruments than right-hand side 

variables. Here a solution to ĝ(β) = 0 generally will not exist, because this would solve 

more equations than parameters. Also, it can be shown that 
√ 
nĝ(β̂) has a nondegenerate 

asymptotically normal distribution, so that the probabability of ĝ(β̂) = 0  goes  to  zero.  

When m > p all that can be done is set sample moments close to zero. Here the choice 

of Â matters for the estimator, affecting its limiting distribution. 

TWO STEP OPTIMAL GMM ESTIMATOR: When m > p the GMM esti­

mator will depend on the choice of weighting matrix Â. An important question is how to 

choose Â optimally, to minimize the asymptotic variance of the GMM estimator. It turns 

ˆ ˆ p
out that an optimal choice of A is any such that A −→ Ω− 1 , where Ω is the asymptotic 

nvariance of 
√ 
nĝ(β0) =  

P 
i=1 gi(β0)/

√ 
n. Choosing  Â = Ω̂− 1 to be the inverse of a con­

sistent estimator Ω̂ of Ω will minimize the asymptotic variance of the GMM estimator. 

This leads to a two-step optimal GMM estimator, where the first step is construction of 

Ω̂ and the second step is GMM with Â = Ω̂− 1 . 

The optimal Â depends on the form of Ω. In general a central limit theorem will lead 

to 

Ω = lim  E[nĝ(β0)ĝ(β0)0], 
n−→∞ 

when the limit exists. Throughout these notes we will focus on the stationary case where 

E[gi(β0)gi+c(β0)
0] does not depend on i. We begin by assuming that E[gi(β0)gi+c(β0)0] = 0  

for all positive integers c. Then 

Ω = E[gi(β0)gi(β0)0]. 

In this case Ω can be estimated by replacing the expectation by a sample average and β0 
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by an estimator β̃, leading to 

n

Ω̂ =
1 X 

gi(β̃)gi(β̃)
0. 

n i=1 

The β̃ could be obtained by GMM estimator by using a choice of Â that does not depend 

on parameter estimates. For example, for IV β̃ could be the 2SLS estimator where 

Â = (Z 0Z)−1 . 

In the IV setting this Ω̂ has a heteroskedasticity consistent form. Note that for 

ε̃i = yi − Xi
0β̃, 

n1 X 
Ω̂ = ZiZi

0ε̃2 
i . n i=1 

The optimal two step GMM (or generalized IV) estimator is then 

β̂ = (X 0ZΩ̂−1Z 0X)−1X 0ZΩ̂−1Z 0y. 

Because the 2SLS corresponds to a non optimal weighting matrix this estimator will 

generally have smaller asymptotic variance than 2SLS (when m > p). However, when 

homoskedasticity prevails, Ω̂ = σ̂ε 
2Z 0Z/n is a consistent estimator of Ω, and the 2SLS 

estimator will be optimal. The 2SLS estimator appears to have better small sample 

properties also, as shown by a number of Monte Carlo studies, which may occur because 

using a heteroskedasticity consistent Ω̂ adds noise to the estimator. 

When moment conditions are correlated across observations, an autocorrelation con­

sistent variance estimator estmator can be used, as in 

X X 
Ω̂ = Λ̂0 + 

L

wcL(Λ̂c + Λ̂0c), Λ̂c = 
n−c

gi(β̃)gi+c(β̃)
0/n. 

c=1 i=1 

where L is the number of lags that are included and the weights wcL are used to ensure 

Ω̂ is positive semi-definite. A common example is Bartlett weights wcL = 1  − c/(L + 1), 

as in Newey and West (1987). It is beyond the scope of these notes to suggest choices of 

L. 

ˆA consistent estimator V of the asymptotic variance of 
√
n(β̂ − β0) is needed for 

asymptotic inference. For the optimal Â = Ω̂−1 a consistent estimator is given by 

V̂ = (Ĝ0Ω̂−1Ĝ)−1 , Ĝ = ∂ĝ(β̂)/∂β. 
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One could also update the Ω̂ by using the two step optimal GMM estimator in place of β̃

in its computation. The value of this updating is not clear. One could also update the Â

in the GMM estimator and calculate a new GMM estimator based on the update. This 

iteration on Ω̂ appears to not improve the properties of the GMM estimator very much. 

A related idea that is important is to simultaneously minimize over β in Ω̂ and in the 

moment functions. This is called the continuously updated GMM estimator (CUE). For 

nexample, when there is no autocorrelation, for Ω̂(β) =  
P 

i=1 gi(β)gi(β)
0/n the CUE is 

β̂ = arg  min ĝ(β)0Ω̂(β)−1ĝ(β). 
β 

The asymptotic distribution of this estimator is the same as the two step optimal GMM 

estimator but it tends to have smaller bias in the IV setting, as will be discussed below. 

It is generally harder to compute than the two-step optimal GMM. 

ADDING MOMENT CONDITIONS: The optimality of the two step GMM 

estimator has interesting implications. One simple but useful implication is that adding 

moment conditions will also decrease (or at least not decrease) the asymptotic variance 

of the optimal GMM estimator. This occurs because the optimal weighting matrix for 

fewer moment conditions is not optimal for all the moment conditions. To explain further, 

suppose that gi(β) = (gi 
1(β)0, gi 

2(β)0)0. Then the optimal GMM estimator for just the first 

set of moment conditions  gi 
1(β) is uses  Ã ! 

Â = (Ω̂1)−1 0 
,

0 0 

n 1where Ω̂1 is a consistent estimator of the asymptotic variance of 
P 

i=1 gi (β0)/
√
n. This Â

is not generally optimal for the entire moment function vector gi(β). 

For example, consider the linear regression model 

E[yi|Xi] =  Xi
0β0. 

The least squares estimator is a GMM estimator with moment functions gi 
1(β) =  Xi(yi − 

Xi
0β). The conditional moment restriction implies that E[εi|Xi] =  0  for  εi = yi − Xi

0β0. 

We can add to these moment conditions by using nonlinear functions of Xi as additional 
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”instrumental variables.” Let g2(β) =  a(Xi)(yi − X 0β) for  some  (m − p) × 1 vector of  i i

functions of Xi. Then the optimal two-step estimator based on Ã ! 

gi(β) =  
a(
X
X
i

i)
(yi − Xi

0β) 

will be more efficient than least squares when there is heteroskedasticity. This estimator 

has the form of the generalized IV estimator described above where Zi = (Xi
0, a(Xi)

0)0. 

It will provide no efficiency gain when homoskedasticity prevails. Also, the asymptotic 

variance estimator V̂ = (Ĝ0Ω̂−1Ĝ)−1 tends to provide a poor approximation to the vari­

ance of β̂. See Cragg (1982, Econometrica). Interesting questions here are what and how 

many functions to include in a(X) and how to improve the variance estimator. Some of 

these issues will be further discussed below. 

Another example is provided by missing data. Consider again the linear regression 

model, but now just assume that E[Xiεi] = 0, i.e. Xi
0β0 may not be the conditional mean. 

Suppose that some of the variables are sometimes missing and Wi denote the variables 

that are always observed. Let ∆i denote a complete data indicator, equal to 1 if (yi, Xi) 

are observed and equal to 0 if only Wi is observed. Suppose that the data is missing 

completely at random, so that ∆i is independent of Wi. Then  there  are  two  types  of  

moment conditions available. One is E[∆iXiεi] = 0, leading to a moment function of the 

form 

gi 
1(β) =  ∆iXi(yi − Xi

0β). 

GMM for this moment condition is just least squares on the complete data. The other 

type of moment condition is based on Cov(∆i, a(Wi)) = 0 for any vector of functions 

a(W ), leading to a moment function of the form 

gi 
2(η) = (∆i − η)a(Wi). 

One can form a GMM estimator by combining these two moment conditions. This will 

generally be asymptotically more efficient than least squares on the complete data when 

Yi is included in Wi. Also, it turns out to be an approximately efficient estimator in the 

Cite as: Whitney Newey, course materials for 14.386 New Econometric Methods, Spring 2007.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology.
Downloaded on [DD Month YYYY].



presence of missing data. As in the previous example, the choice of a(W ) is an interesting  

question. 

Although adding moment conditions often lowers the asymptotic variance it may not 

improve the small sample properties of estimators. When endogeneity is present adding 

moment conditions generally increases bias. Also, it can raise the small sample variance. 

Below we discuss criteria that can be used to evaluate these tradeoffs. 

One setting where adding moment conditions does not lower asymptotic efficiency 

i

is when those the same number of additional parameters are also added. That is, if 

the second vector of moment functions takes the form g2(β, γ) where  γ has the same 

2dimension as g

situation is analogous to that in the linear simultaneous equations model where adding 

exactly identified equations does not improve efficiency of IV estimates. Here adding 

exactly identified  moment  functions does not  improve efficiency of GMM. 

Another thing GMM can be used for is derive the variance of two step estimators. 

Consider a two step estimator β̂ that is formed by solving 

i (β, γ) then there will be no efficiency gain for the estimator of β. This 

1
 nX 
g 

n i=1 

2 
i (β, γ̂) = 0,


P
 1 
i

n
i

i

=1 g

then ( β,ˆ γ̂) is a (joint) GMM estimator for the triangular moment conditions Ã ! 
1g

where γ̂ is some first step estimator. If γ̂ is a GMM estimator solving (γ)/n = 0 


(γ)

gi(β, γ) =  2 . 

(β, γ)
ig

The asymptotic variance of  
√
n(β̂− β0) can be calculated by applying the general GMM 

formula to this triangular moment condition. 

=
0 the asymptotic variance of β̂ will not depend on esti­iWhen E[∂g2 

mation of γ, i.e. 

(β0, γ0)/∂γ] 

i
2will the same as for GMM based on gi(β) =  g

condition for this is that 

2 

(β, γ0). A sufficient 

E[g
 (β0, γ)] = 0 i

i

for all γ in some neighborhood of γ0. Differentiating this identity with respect to γ, and  

assuming that differentiation inside the expectation is allowed, gives E[∂g2(β0, γ0)/∂γ] =  
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0. The interpretation of this is that if consistency of the first step estimator does not 

affect consistency of the second step estimator, the second step asymptotic variance does 

not need to account for the first step. 

ASYMPTOTIC THEORY FOR GMM: We mention precise results for the i.i.d. 

case and give intuition for the general case. We begin with a consistency result: 

If the data are i.i.d. and i) E[gi(β)] = 0 if and only if β = β0 (identification); ii) 

the GMM minimization takes place over a compact set B containing β0; iii) gi(β) is 

continuous at each β with probability one and E[supβ∈B kgi(β)k] is finite; iv) Â
p 

A→ 

positive definite; then β̂
p 
β0.→ 

See Newey and McFadden (1994) for the proof. The idea is that, for g(β) =  E[gi(β)], 

by the identification hypothesis and the continuity conditions g(β)0Ag(β) will be bounded 

away from zero outside any neighborhood N of β0. Then by the law of large numbers 

ˆ ˆ p
and iv), so will ĝ(β)0Âĝ(β). But, ĝ(β̂)0Aĝ(β̂) ≤ ĝ(β0)0Ag(β0) → 0 from the  definition of 

β̂ and the law of large numbers, so β̂ must be inside N with probability approaching one. 

The compact parameter set is not needed if gi(β) is linear, like for IV. 

Next we give an asymptotic normality result: 

If the data are i.i.d., β̂
p 
β0 and i) β0 is in the interior of the parameter set over → 

which minimization occurs; ii) gi(β) is continuously differentiable on a neighborhood N 
p

of β0 iii) E[supβ∈N k∂gi(β)/∂βk] is finite; iv) Â → A and G0AG is nonsingular, for 

G = E[∂gi(β0)/∂β]; v)  Ω = E[gi(β0)gi(β0)0] exists, then 

d√ 
n(β̂ − β0) −→ N(0, V  ), V  = (G0AG)−1G0AΩAG(G0AG)−1 . 

See Newey and McFadden (1994) for the proof. Here we give a derivation of the 

asymptotic variance that is correct even if the data are not i.i.d.. 

By consistency of β̂ and β0 in the interior of the parameter set, with probability 

approaching (w.p.a.1) the first order condition 

0 =  Ĝ0Âĝ(β̂), 

is satisfied, where Ĝ = ∂ĝ(β̂)/∂β. Expand ĝ(β̂) around  β0 to obtain 

0 =  Ĝ0Âĝ(β0) +  Ĝ0ÂḠ(β̂ − β0), 
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where Ḡ = ∂ĝ(β̄)/∂β and β̄ lies on the line joining β̂ and β0, and actually differs from 

row to row of Ḡ. Under regularity conditions like those above Ĝ0ÂḠ will be nonsingular 

w.p.a.1. Then multiplying through by 
√ 
n and solving gives 

³ ´ √ 
n(β̂ − β0) =  − Ĝ0ÂḠ

−1 
Ĝ0Â
√ 
nĝ(β0). 

d ˆ p
By an appropriate central limit theorem 

√ 
nĝ(β0) −→ N(0, Ω). Also we have A −→³ ´ 

ˆ p ¯ p ˆ −1 ˆ p
A, G −→ G, G −→ G, so by the continuous mapping theorem, G0ÂḠ G0Â −→ 

(G0AG)−1 G0A. Then by the Slutzky lemma, 

d√ 
n(β̂ − β0) −→ − (G0AG)

−1 
G0AN(0, Ω) =  N(0, V  ). 

The fact that A = Ω−1 minimizes the asymptotic varince follows from the Gauss 

Markov Theorem. Consider a linear model. 

E[Y ] =  Gδ, V ar(Y ) =  Ω. 

The asymptotic variance of the  GMM estimator  with  A = Ω−1 is (G0Ω−1G)−1. This  is  

also the variance of generalized least squares (GLS) in this model. Consider an estmator 

δ̂ = (G0AG)−1G0AY . It is linear and unbiased and has variance V . Then by the Gauss-

Markov Theorem, 

V − (G0Ω−1G)−1 is p.s.d.. 

We can also derive a condition for A to be efficient. The Gauss-Markov theorem says 

that GLS is the the unique minimum variance estimator, so that A is efficient if and only 

if 

(G0AG)−1G0A = (G0Ω−1G)−1G0Ω−1 . 

Transposing and multiplying gives 

ΩAG = GB, 

where B is a nonsingular matrix. This is the condition for A to be optimal. 

CONDITIONAL MOMENT RESTRICTIONS: Often times the moment re­

strictions on which GMM is based arise from conditional moment restrictions. Let 
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ρi(β) =  ρ(wi, β) be a  r × 1 residual vector. Suppose that there are some instruments zi 

such that the conditional moment restrictions 

E[ρi(β0)|zi] = 0  

are satisfied. Let F (zi) be an  m × r matrix of instrumental variables that are functions 

of zi. Let  gi(β) =  F (zi)ρi(β). Then by iterated expectations, 

E[gi(β0)] = E[F (zi)E[ρi(β0)|zβi]] = 0. 

Thus gi(β) satisfies the GMM moment restrictions, so that one can form a GMM esti­

mator as described above. For moment functions of the form gi(β) =  F (zi)ρi(β) we can  

think of GMM as a nonlinear instrumental variables estimator. 

The optimal choice of F (z) can  be  described as follows.  Let  D(z) =  E[∂ρi(β0)/∂β|zi = 

z] and  Σ(z) =  E[ρi(β0)ρi(β0)0|zi = z]. The optimal choice of instrumental variables F (z) 

is 

F ∗(z) =  D(z)0Σ(z)−1 . 

This F ∗(z) is optimal in the sense that it minimizes the asymptotic variance of a GMM 

estimator with moment functions gi(β) =  F (zi)ρi(β) and a weighting matrix A. To 

show this optimality let Fi = F (zi), Fi 
∗ = F ∗(zi), and ρi = ρi(β0). Then by iterated 

expectations, for a GMM estimator with moment conditions gi(β) =  F (zi)ρi(β), 

G = E[Fi∂ρi(β0)/∂β] =  E[FiD(zi)] = E[FiΣ(zi)Fi 
∗0] =  E[Fiρiρ

0
iFi 
∗0]. 

Let hi = G0AFiρi and h∗ 
i = Fi 

∗ρi, so that  

G0AG = G0AE[Fiρih
∗
i 
0] =  E[hihi 

∗0], G0AΩAG = E[hihi
0 ]. 

Note that for Fi = Fi 
∗ we have G = Ω = E[h∗ 

i h
∗
i 
0]. Then the difference of the asymptotic 

variance for gi(β) =  Fiρi(β) and  some  A and the asymptotic variance for gi(β) =  Fi 
∗ρi(β) 

is 

(G0AG)−1G0AΩAG(G0AG)−1 − (E[h∗ 
i h
∗ 
i 
0])
−1 

= (E[hih
∗ 
i
0])
−1 {E[hih0i] − E[hihi 

∗0] (E[hi 
∗hi 
∗0])

−1 
E[hi 

∗hi
0 ]} (E[hi ∗hi0 ])

−1 
. 
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The matrix in brackets is the second moment matrix of the population least squares 

projection of hi on h∗ 
i and is thus positive semidefinite, so the whole matrix is positive 

semi-definite. 

Some examples help explain the form of the optimal instruments. Consider the 

linear regression model E[yi|Xi] =  Xi
0β0 and let ρi(β) =  yi − Xi

0β, εi = ρi(β0), and 

σi 
2 = E[ε2 

i |Xi] =  Σ(zi). Here the instruments zi = Xi. A GMM  estimator with mo­

ment conditions F (zi)ρi(β) =  F (Xi)(yi − X 0β) is the estimator described above that i

will be asymptotically more efficient than least squares when F (Xi) includes  Xi. Here  

∂ρi(β)/∂β = −Xi
0, so that the optimal instruments are 

Fi 
∗ = 
−
σ

X
2 
i 
. 

i 

Here the GMM estimator with the optimal instruments in the heteroskedasticity corrected 

generalized least squares. 

Another example is a homoskedastic linear structural equation. Here again ρi(β) =  

yi − Xi
0β but now zi is not Xi and E[εi 

2|zi] =  σ2 is constant. Here D(zi) =  −E[Xi|zi] 

is the reduced form for the right-hand side variables. The optimal instruments in this 

example are 

Fi 
∗ = 
−D(zi) 

. 
σ2 

Here the reduced form may be linear in zi or nonlinear. 

For a given F (z) the GMM estimator with optimal A = Ω−1 corresponds to an 

approximation to the optimal estimator. For simplicity we describe this interpretation 

for r = p = 1. Note that for gi = Fiρi it follows similarly to above that G = E[gihi 
∗0], so 

that 

G0Ω−1 = E[hi 
∗gi
0](E[gigi

0])−1 . 

That is G0Ω−1 are the coefficients of the population projection of h∗ 
i on gi. Thus  we  can  

interpret the first order conditions for GMM 

nX 
0 =  Ĝ0Ω̂−1ĝ(β̂) =  Ĝ0Ω̂−1 Fiρi(β)/n, 

i=1 
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can be interpreted as an estimated mean square approximation to the first order condi­

tions for the optimal estmator 
nX 

0 =  Fi 
∗ρi(β)/n. 

i=1 

(This holds for GMM in other models too). 

One implication of this interpretation is that if the number and variety of the elements 

of F increases in such a way that linear combinations of F can approximate any function 

arbitrarily well then the asymptotic variance for GMM with optimal A will approach 

the optimal asymptotic variance. To show this, recall that m is the dimension of Fi 

and let the notation Fi
m indicate dependence on m. Suppose that for any a(z) with  

E[Σ(zi)a(zi)
2] finite there exists m × 1 vectors πm such that as m −→ ∞ 

E[Σ(zi){a(zi) − πm0Fi
m}2] −→ 0. 

For example, when zi is a scalar the nonnegative integer powers of a bounded monotonic 

transformation of zi will have this property. Then it follows that for hmi = ρiFi
m0Ω−1G 

− hm}2] ≤ E[{h∗ πm}2] =  E[ρ2 0πm}2]E[{h∗ 
i i i − ρiFi

m0 
i {Fi 

∗ − Fi
m

= E[Σ(zi){Fi 
∗ − Fi

m0πm}2] −→ 0. 

Since hi
m converges in mean square to hi 

∗, E[hi
mhi

m0] −→ E[hi 
∗h∗i 

0], and hence 

(G0Ω−1G)−1 = (G0Ω−1E[gigi
0]Ω−1G)−1 = (E[hi

mhi
m0])−1 −→ (E[hi 

∗hi 
∗0])−1 . 

Because the asymptotic variance is minimzed at h∗ 
i the asymptotic variance will  ap­

proach the lower bound more rapidly as m grows than hmi approaches h
∗ 
i . In  practice  

this may mean that it is possible to obtain quite low asymptotic variance with relatively 

few approximating functions in Fi
m . 

An important issue for practice is the choice of m. There has been some progress on 

this topic in the last few years, but it is beyond the scope of these notes. 

BIAS IN GMM: The basic idea of this discussion is to consider the expectation of 

the GMM objective function. This analysis is similar to that in Han and Phillips (2005). 
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They refer to a term in the expectation that is not minimized at the true paramater as 

a ”noise” term. We refer to it as a bias term. This bias in the GMM objective function 

will lead to a bias in the estimator of the same order. We focus on the objective function 

because it is relatively easy to analyze. 

We will begin with the case where the weighting matrix A is not random, and then 

discuss how having a random A will affect the results. We will focus on i.i.d. observations. 

Let ḡ(β) =  E[gi(β)] and Ω(β) =  E[gi(β)gi(β)0]. Note that 

E[gi(β)
0Agi(β)]	 = E[tr{gi(β)0Agi(β)}] =  E[tr{Agi(β)gi(β)0}] 

= tr{E[Agi(β)gi(β)0]} = tr{AΩ(β)}. 

The expectation Q̄(β) of the GMM objective function Q̂(β) = ĝ(β)0Aĝ(β) is  

n	 nX	 X 
Q̄(β) =  E[ gi(β)

0Agj (β)]/n
2 = E[gi(β)

0Agj(β)]/n
2 

i,j=1 i,j=1 
nX	 X 

= ḡ(β)0Aḡ(β)/n2 + E[gi(β)
0Agi(β)]/n

2 

i=j i=16

= (1  − n−1)ḡ(β)0Aḡ(β) +  tr(AΩ(β))/n. 

By the moment conditions ḡ(β0) =  E[gi(β0)] = 0, so the first term (1−n−1)ḡ(β)0Aḡ(β) is  

minimized at β0. However, the second term is not generally minimized at β0, and hence 

¯neither is Q(β). Han and Phillips (2005) refer to the first term as a signal term and the 

second term as a noise term. 

The first term generally has constant size as n grows while the second, ”bias” term 

shrinks at rate n−1 . This leads to consistency of GMM, because the first term dominates 

for large n. Also it turns out that the bias in the GMM estmator of β0 is  of  the same order,  

namely n−1 . Furthermore, the bias term will tend to grow linearly with the number of 

moment conditions m. This term takes the form tr(AΩ(β))/n, having numerator equal 

to the trace of an m × m matrix. This will grow linearly with m when the diagonal 

elements of AΩ(β) stay the same magnitude, leading to bias in the estimator that grows 

linearly with m. 

To summarize, we expect to find that the two step GMM estimator is biased, with 
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1) A bias that vanishes at rate 1/n.


2) A bias that grows at rate m with the number of moment conditions.


Higher-order asymptotics can be used to show that this does indeed happen.


There are two known approaches to reducing the bias of GMM from this source.


A) Subtract from the GMM objective function an estimate of the bias.


B) Make the bias not depend on β by right choice of A.


nTo see how A) works, note that Ω̂(β) =  
P 

i=1 gi(β)gi(β)
0/n is an estimator of Ω(β). 

Then an estimator of the bias term is given by tr{AΩ̂(β)}/n. We  can then form a less  

biased estimator by minimizing a new objective function of the form 

Q̃(β) =  Q̂(β) − tr{AΩ̂(β)}/n. 

We  can obtain an alternative  expression  for this estimator  by  working with the  trace  like  

we did before. Note that 

X X 
tr{AΩ̂(β)}/n = tr{Agi(β)gi(β)0}/n2 = tr{gi(β)0Agi(β)}/n2 

i i X 
= gi(β)

0Agi(β)/n
2 . 

i 

Therefore, it follows that 

X 
Q̃(β) =  Q̂(β) − tr{AΩ̂(β)}/n = ĝ(β)0Aĝ(β) − gi(β)

0Agi(β)/n
2 

i X X 
= gi(β)

0Agj (β)/n
2 − gi(β)

0Agi(β)/n
2 

i,j i X 
= gi(β)

0Agj (β)/n
2 .


i=j
6

The expectation of this objective function is given by 

X 
E[Q̃(β)] = ḡ(β)0Aḡ(β)/n2 = (1  − n−1)ḡ(β)0Aḡ(β). 

i=j6

The bias term has been completely removed, and hence this objective function is mini­

mized at the truth. 

To understand better this estimator, it is interesting to consider the case of linear 

instrumental variables estimation where gi(β) =  Zi(yi − x0β). Then the bias corrected i
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objective function is 

X 
Q̃(β) =  (yi − xi

0β)Zi
0AZj (yj − x0j β)/n

2 . 
i=j6

Let pij = Zi
0AZj . Solving the first-order condition ∂Q̃(β̃)/∂β = 0 for the estimator β̃

gives ⎛ ⎞−1 X X 
β̃ = ⎝ xipij x

0
j 
⎠ xipij yj . 

i=j i=j6 6

This estimator is similar to a jackknife IV estimator considered by Angrist, Krueger, P 
and Imbens. The jackknife terminology refers to i=j xipij being an estimated of the jth 

6

reduced form observation formed from all the other observations. 

To see how approach B) works, consider replacing A by the unknown object Ω(β)−1 in 

the GMM objective function. The new objective function is given by Q̆(β) = ĝ(β)0Ω(β)−1ĝ(β). 

Substituting Ω(β)−1 for A in the expectation formula gives 

E[Q̆(β)] = (1 − n−1)ḡ(β)0Ω(β)−1ḡ(β) +  tr(Ω(β)−1Ω(β))/n 

= (1  − n−1)ḡ(β)0Ω(β)−1ḡ(β) +  m/n. 

Here the bias term is not removed, but it is made to not depend on β, so that the 

objective function will be minimized at the true value. 

This estimator is not feasbile, because Ω(β) is known. A feasible version can be 

obtained by replacing Ω(β) with its estimator Ω̂(β). The estimator that minimizes the 

resulting objective function is given by 

β̆ = arg  min ĝ(β)0Ω̂(β)−1ĝ(β). 
β 

This is the continuous updating estimator of Hansen, Heaton, and Yaron. 

The limited information maximum likelihood (LIML) estimator takes this form, where 

homoskedasticity is imposed on Ω̂(β). Let Ω̃(β) =  {(y − Xβ)0(y − Xβ)/n}Z 0Z/n. Then 

ĝ(β)0Ω̃(β)−1ĝ(β) =
(y − Xβ)0Z(Z 0Z)−1Z 0(y − Xβ) 

. 
(y − Xβ)0(y − Xβ) 

Minimizing this objective function gives LIML. Note though that the bias term is not 

removed when heteroskedasticity is present.  
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The small bias property of the CUE is shared by Generalized Empirical Likelihood 

(GEL) estimators. A GEL estimator takes the form 

nX 
β̂ = arg  minmax ρ(λ0gi(β)), ρ(u) concave.  

β λ 
i=1 

This is continuous updating estimator for ρ(u) quadratic. In comparison with GMM it 

has first-order conditions (Newey and Smith, 2004): 

GMM : [  
X 1 

∂gi(β̂)/∂β]
0[ 
X 1 

ĝi(β̂)gi(β̂)
0]−1ĝ(β) = 0. 

n ni i X X 
GEL : [  π̂i∂gi(β̂)/∂β]0[ ŵiĝi(β̂)gi(β̂)

0]−1ĝ(β̂) =  0. 
i i 

Use of π̂i rather than 1/n in Jacobian removes correlation between Jacobian and moments 

as well as correlation between second moment matrix and moments, leading to lower bias. 

Can get a explicit version of this for continuous updating estimator. For notational 

nsimplicity, assume β is a scalar. Note that for Ω̂(β) =  
P 

i=1 gi(β)gi(β)
0/n, 

nX 
∂Ω̂(β)/∂β = Ĉ(β) +  Ĉ(β)0, Ĉ(β) =  [∂gi(β)/∂β]gi(β)

0/n, 
i=1 

where Ĉ(β) is the estimated covariance between gi(β) and its derivative with respect to 

β. First order conditions for continuous updating are 

0 =  ∂[ĝ(β)0Ω̂(β)−1ĝ(β)]/∂β 

= 2∂ĝ(β)/∂β0Ω̂(β)−1ĝ(β) − ĝ(β)0Ω̂(β)−1[Ĉ(β) +  Ĉ(β)0]Ω̂(β)−1ĝ(β) 

= 2{∂ĝ(β)/∂β0Ω̂(β)−1ĝ(β) − ĝ(β)0Ω̂(β)−1Ĉ(β)0Ω̂(β)−1ĝ(β)} 

= [∂ĝ(β)/∂β − Ĉ(β)Ω̂(β)−1ĝ(β)]Ω̂(β)−1ĝ(β). 

The object ∂ĝ(β)/∂β − Ĉ(β)Ω̂(β)−1ĝ(β) is the vector of residual from projecting the 

elements of the derivatives on the moments and so is asymptotically uncorrelated with the 

moments. Correlation between the moments and their derivatives is an important source 

of bias in the two step optimal GMM estimator, which is removed by the continuously 

updated estimator. 
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TESTING IN GMM: An important test statistic for GMM is the test of overiden­

tifying restrictions that is given by 

T = nĝ(β̂)0Ω̂−1ĝ(β̂). 

When the moment conditions E[gi(β0)] = 0 are satisfied then as the sample size grows 

we will have 
d

T −→ χ2(m − p). 

Thus, a test with asymptotic level α consists of rejecting if T ≥ q where q is the the 1 − α 

quantile of a χ2(m − p) distribution. 

Under the conditions for asymptotic normality, Ω nonsinglar, and Ω̂
p 

Ω, for an → 
d 

efficient GMM estimator it follows that T −→ χ2(m − p). 

See Newey and McFadden (1994) for a precise proof. Here we outline the proof. Let 

R denote a symmetric square root of the matrix Ω (i.e. RR = Ω) and  let  H = R−1G. 

Using expansions similarly to the proof of asymptotic normality, we have 

¯ ¯ ˆ
√ 
nĝ(β̂) =  

√ 
nĝ(β0) +  G

√ 
n(β̂ − β0) = [I − G(Ĝ0Ω−1Ḡ)−1Ĝ0Ω̂−1]

√ 
nĝ(β0) 

= [I − G(G0Ω−1G)−1G0Ω−1]
√ 
nĝ(β0) +  op(1), 

= R[I − H(H 0H)−1H 0]R−1
√ 
nĝ(β0) +  op(1), 

¯where G is given above in the discussion of asymptotic normality and op(1) is a ran­

dom variable that converges in probability to zero. Then by R−1ΩR−1 = I we have 
d

R−1
√ 
nĝ(β0) −→ N(0, I) so that  

d√ 
nĝ(β̂) −→ R[I − H(H 0H)−1H 0]U,U ∼ N(0, I). 

p
By consistency of Ω̂ and nonsingularity of Ω it follows that Ω̂−1 −→ Ω−1. Then  by  the  

p
continuous mapping theorem RΩ̂−1R −→ I so that by I − H(H 0H)−1H 0 idempotent with 

rank m − p, 
d

T −→ U 0(I − H(H 0H)−1H 0)U. 

By a standard result in multivariate normal theory, U 0(I − H(H 0H)−1H 0)U is distributed 

as χ2(m − p), giving the result. 
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This statistic will not detect all misspecification. It is only a test of overidentifying 

restrictions. Intuitively, p moments are ”used up” in estimating β. In the exactly iden­

tified case where m = p note that ĝ(β̂) = 0, so there is no way to test any moment 

conditions. 

An example is in IV estimation, where gi(β) =  Zi(y − Xi
0β). There the test stastistic 

is 

T = ε̂ Z ̂ 0ε/n, ˆ β.0 Ω−1Z ˆ ε = y − X ˆ

One could also use an updated Ω̂, based  on  ̂ε. This takes particular form in the indepen­

dent observations case. When homoskedasticity holds and ˆ ε ˆΩ = 0̂ε/T the test statistic 

is 

0̂ ε/ˆε,T = n ε Z(Z 0Z)−1Z 0 ˆ ε0 ˆ· 

that is nR2 from regression of ε̂ on Z. When β̂ is the generalized IV estimator and the 

nheteroskedasticity consistent Ω̂ = 
P 

i=1 ZiZi
0ε̂2 
i /n is used in forming the test statistic it is 

T = e0r̂(r̂0r̂)−1 r̂0e, 

the nR2 from regressing e = (1, ..., 1)0 on r̂ = [ε̂1Z1, ..., ε̂nZn]
0. 

It is also possible to test subsets of moment restrictions. Partition gi(β) = (gi 
1(β)0, gi 

2(β)0)0 

and Ω conformably. One simple test is 

T̂1 = min  nĝ(β)0Ω̂−1ĝ(β) − min nĝ2(β)0Ω̂−1 ĝ2(β).22
β β 

The asymptotic distribution of this is χ2(m1) where  m1 is the dimension of ĝ1(β). Another 

version can be formed as 

ng̃10Ω̃−1g̃1 , 

where g̃1 = ĝ1(β̂) − Ω̂12 
ˆ
22 ĝ

2(β̂) and  ̃Ω−1 Ω is an estimator of the asymptotic variance of 
√
ng̃1 . If m1 ≤ p then, except in any degenerate cases, a Hausman test based on the 

difference of the optimal two-step GMM estimator using all the moment conditions and 

using just ĝ2(β) will be asymptotically equivalent to this test, for any m1 parameters. 

See Newey (1984, GMM Specification Testing, Journal of Econometrics.) 
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We  can also consider tests  of  a null hypothesis of the  form  

H0 : s(β0) = 0, 

where s(β) is a  q × 1 vector of functions. 

Let s(β) by a q × 1 vector of functions with q < p  and rank(∂s(β0)/∂β) =  q, β̃ be 

a restricted GMM estimator β̃ = arg  mins(β)=0 ĝ(β)
0Ω̂−1ĝ(β), and G̃ = ∂ĝ(β̃)/∂β. Under 

the null hypotheses H0 : s(β) = 0  and the same conditions as for the overidentification 

test, 

Wald  : W = ns(β̂)0[∂s(β̂)/∂β(Ĝ0Ω̂−1Ĝ)−1∂s(β̂)/∂β]−1 s(β̂) d 
χ2(q),→ 

g( ˜ Ω−1ĝ( ˜ g( ˆ Ω̂−1ĝ( ˆ
p

SSR : nˆ β)0 ˆ β) − nˆ β)0 β) − W → 0, 

LM : nĝ(β̃)0Ω̂−1G̃(G̃0Ω̂−1G̃)−1G̃0Ω̂−1ĝ(β̃) − W 
p 
0.→ 

Here SSR is like sum of squared residuals, LM is Lagrange Multiplier, and W is a Wald 

statistic. The asymptotic approximation often more accurate for SSR and LM than W. 

Equivalence also holds under sequence of local alternatives. 

SMALL BIAS METHODS: grows with number of moment conditions (also weak 

identification a problem in intertemporal CAPM; see Stock and Wright (2001)). Bias of 

continuous updating estimator nonlinear IV estimator grows much slower with number of 

moment conditions. Other alternative estimators have similar properties. An important 

class of estimators is Generalized Empirical Likelihood (GEL). The estimator takes the 

form 
nX 

β̂ = arg  minmax ρ(λ0gi(β)), ρ(u) concave.  
β λ 

i=1 

This is continuous updating estimator for ρ(u) quadratic. In comparison with GMM it 

has first-order conditions (Newey and Donald, 2004): 

GMM : [  
X 1 

∂gi(β̂)/∂β]
0[ 
X 1 

ĝi(β̂)gi(β̂)
0]−1ĝ(β) = 0. 

n ni i X X 
GEL : [  π̂i∂gi(β̂)/∂β]

0[ ŵiĝi(β̂)gi(β̂)
0]−1ĝ(β̂) =  0. 

i i 
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Use of π̂i rather than 1/n in Jacobian removes correlation between Jacobian and moments 

as well as correlation between second moment matrix and moments, leading to lower bias. 

Can get a explicit version of this for continuous updating estimator. For notational 

nsimplicity, assume β is a scalar. Note that for Ω̂(β) =  
P 

i=1 gi(β)gi(β)
0/n, 

nX 
∂Ω̂(β)/∂β = Ĉ(β) +  Ĉ(β)0, Ĉ(β) =  [∂gi(β)/∂β]gi(β)

0/n, 
i=1 

where Ĉ(β) is the estimated covariance between gi(β) and its derivative with respect to 

β. First order conditions for continuous updating are 

0 =  ∂[ĝ(β)0Ω̂(β)−1ĝ(β)]/∂β 

= 2∂ĝ(β)/∂β0Ω̂(β)−1ĝ(β) − ĝ(β)0Ω̂(β)−1[Ĉ(β) +  Ĉ(β)0]Ω̂(β)−1ĝ(β) 

= 2{∂ĝ(β)/∂β0Ω̂(β)−1ĝ(β) − ĝ(β)0Ω̂(β)−1Ĉ(β)0Ω̂(β)−1ĝ(β)} 

= [∂ĝ(β)/∂β − Ĉ(β)Ω̂(β)−1ĝ(β)]Ω̂(β)−1ĝ(β). 

The object ∂ĝ(β)/∂β − Ĉ(β)Ω̂(β)−1ĝ(β) is the vector of residual from projecting the 

elements of the derivatives on the moments and so is asymptotically uncorrelated with the 

moments. Correlation between the moments and their derivatives is an important source 

of bias in the two step optimal GMM estimator, which is removed by the continuously 

updated estimator. 
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