
14.30 Exam 3 Solutions
Fall 2004

Question 1
(i) FALSE. Knowing the null distribution of a hypothesis test and the deci-

sion rule allows on to calculate α but not β.
(ii) FALSE. MLE estimators are consistent but not always unbiased. For

instance, the MLE of the population variance is consistent but biased.
(iii) FALSE. We cannot make any generalized statements about MM esti-

mators that are related to unbiasedness or consistency.
(iv) TRUE. This is just the invariance property of MLE.
(v) FALSE. Optimality implies minimizing β (Pr(Type II error)) for all

possible values of the parameters in the alternative set, given the size of α.
Hence, you cannot think of optimality as minimizing both α and β.
(vi) FALSE. The most efficient estimator is one with minimum variance.

Minimum mean squared error is the minimum sum between variance and the
estimator’s bias squared.
(vii) FALSE. The sample mean has a normal distribution when the popula-

tion distribution is known to be normal, or when the sample size is large enough
that CLT will imply normality.

Question 2

a) Yi =
½
0 if Xi ≤ h
1 if Xi > h

¾
; h = 0.5

pdf of discrete Y :
Pr(Yi = 0) = Pr(Xi ≤ (h = 0.5))
=

Z h=0.5

0

1
θdx =

h
θ =

1
2θ

Pr(Yi = 1) = Pr(Xi > (h = 0.5))

=

Z θ

h=0.5

1
θdx = 1− h

θ = 1− 1
2θ

Therefore:

fY (y) =

½
h
θ if y = 0
1− h

θ if y = 1

¾
; h = 0.5

which is a Bernoulli trial

(b) Method of Moments Estimator:
E(Y ) = 0.Pr(y = 0) + 1.Pr(y = 1)
= 1− h

θ = 1− 1
2θ

1st sample moment: 1
n

nX
i=1

Yi = Y

equating the moments:
1− h

θ = Y
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bθMM = h. 1
1−Y =

1
2 .

1
1−Y

(c) First step as always is to find the joint pdf of all the Yis

The Likelihood Function: L(θ | Y1, Y2, ..., Yn) =
nY
i=1

fY (yi) =
¡
h
θ

¢n−Pn
i=1 yi (1−

h
θ )
Pn

i=1 yi

The Log-Likelihood Function: (n−Pn
i=1 yi)(lnh− ln θ)+

Pn
i=1 yi(ln(1− h

θ ))
Now, maximizing the Log-Likelihood Function wrt θ and equating to 0 :
n−Pn

i=1 yi
θ =

Pn
i=1 yi
1−h

θ

. h
θ2bθMLE =

hn
n−Pn

i=1 yi
= h. 1

1−Y =
1
2 .

1
1−Y

notice that bθMLE = bθMM

(d) The idea behind MLE is to maximize the likelihood function with respect
to the unknown parameters. In part (c), we were given the value of h and
therefore maximized the likelihood function with respect to unknown θ. Now,
we are told that h is also unknown. The idea is the same with maximizing
the likelihood function, but now we have to maximize over not only θ but also
h.Mathematically:
Likelihood Function: L(θ, h | Y1, Y2, ..., Yn)
maxθ,h[L(θ, h | Y1, Y2, ..., Yn)] = maxθ,h[

¡
h
θ

¢n−Pn
i=1 yi (1− h

θ )
Pn

i=1 yi ]

This maximization will give us our MLEs: bθMLE and bhMLE

Question 3
(a) one-sided test:

H0 : µ = 600

H1 : µ > 600

Test statistic is the sample mean:X v N(600, 60
2

16 ) under the null hypothesis
Decision rule: Reject H0 if X > k, such that Pr(X > k | µ = 600) = 0.05
= Pr(X ≤ k | µ = 600) = 0.95
= Pr(

√
n(X−µ)

σ ≤
√
16(k−600)

60 | µ = 600) = 0.95
= Pr(

√
n(X−µ)

σ ≤
√
16(k−600)

60 | µ = 600) = 0.95
= Pr(Z ≤ 1.645) = 0.95√
16(k−600)

60 = 1.645
k = 624.75
Reject H0 if:
X > 624.75

(b) u = 620
Power= 1− β = 1− Pr(don’t reject H0 | H1 is true)
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= 1− Φ(624.75−62015 )
= 1− Φ(0.3167)
= 1− 0.6255
= 0.3745

Now if u =: 640
Power= 1− Φ(624.75−64015 )
= 1− Φ(−1.016)
= Φ(1.016)
= 0.8461

Now if u =: 680
Power= 1− Φ(624.75−68015 )
= 1− Φ(−3.683)
= Φ(3.683)
= 0.9999

Explanation: This question is meant to highlight the wording and intuition
we use when testing hypotheses. When testing hypothesis, we should not think
of "accepting" the null hypothesis if our results are such, but rather we should
be thinking in terms of "failing to reject" the null hypothesis. Moreover, we
should be thinking in terms of the probability of rejecting the null hypothesis,
when in fact the alternative is true (i.e. Pr(reject H0 | H1) =Power of test). We
want this probability to be high for parameter values in the alternative set.
The exercise performed above is meant to highlight this distinction. As the

probability of Type II error (Pr(don’t reject H0 | H1) = β) becomes larger,
our probability of incorrectly accepting the null hypothesis becomes larger, and
accordingly, the power of the test goes down. Therefore, we do not use the term
"accept the null" as we might still be wrong, and instead, we use "cannot reject
the null".
In terms of number of observations, our estimation becomes stronger as the

size of the sample increases. Ideally, we would like to have the entire population
as our sample, but that is in most cases unfeasible; that is why we take samples
of the population to test predictions concerning the population. The larger
the sample we can get, the more accurate our results will portray the true
population, and the greater will be the power of our test.

(c) Since variance is unknown, we first have to estimate the population
variance σ2 with the sample variance s2. Given this estimation, we have to use
the t-distribution with the following test statistic:
Test statistic: X−µ

s√
n

v t16−1

reject H0 if
X−µ
s√
n

< t15(α)

where α is the significance level.

(d) Now we are looking for a 2-sided test which has the same alternative
hypothesis as in part (a). So obviously we need to adjust our null hypothesis:

3



H0 : µ ≤ 600
H1 : µ > 600

Decision rule: Reject H0 if X > k, such that Pr(X > k | µ ≤ 600) = α
This means that

Pr(X ≤ k | µ) = 1− α

= Pr(
√
n(X−µ)

σ ≤
√
16(k−µ)
60 | µ) = 1− α

= Pr(
√
n(X−µ)

σ ≤
√
16(k−µ)
60 | µ) = 1− α

= Pr(Z ≤
√
16(k−µ)
60 ) = 1− α

Φ
³√

16(k−µ)
60

´
= (1− α)

now as µ ↓→ Φ
³√

16(k−µ)
60

´
↑→ (1− α) ↑→ α ↓

So, the sup
µ
αµ = αµ=600 = 0.05 = 5%

Question 4

(a) Two-sided hypothesis test:

H0 : µ = 0.5

H1 : µ 6= 0.5

Decision Rule: Reject H0 if X /∈ [C1, C2]
such that:
Pr(X < C1 | µ = 0.5) = 0.015; Pr(X > C2 | µ = 0.5) = 0.015
Since n is large, we can apply CLT and use either the z tables or t tables as

they will give identical values when n is large.
Using the same techniques as in Question 3 part (a), we get:
C1 = 0.5− 2.17.0.320 = 0.46745
C2 = 0.5 + 2.17.

0.3
20 = 0.53255

Summarizing, reject null hypothesis if X > 0.53255 or X < 0.46745
(b) Since X = 0.539 > 0.53255, we reject the null hypothesis
P-value=Pr(

¯̄
X
¯̄
> 0.539 | µ = 0.5)

= Pr(

¯̄̄̄√
n(X−µ)

σ

¯̄̄̄
> 20(0.539−0.5)

0.3 | µ = 0.5)

= Pr(

¯̄̄̄√
n(X−µ)

σ

¯̄̄̄
> 2.6 | µ = 0.5)

= Pr(|Z| > 2.6 | µ = 0.5)

= 2Pr(Z > 2.6 | µ = 0.5)
= 2(1− Pr(Z < 2.6 | µ = 0.5))
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= 2(1− 0.9953)
= 0.0094

(c) In part (a) the sample size was large so we invoked the CLT and assumed
a normal distribution. Hence, by using CLT, we are saying the distribution is
approximately normal. It is important to note, however, that CLT applies as
n goes to infinity. For n smaller than infinity, it is an approximation; of course
the larger the n, the better the approximation. The fact that we know σ, the
population variance, is not significant in deciding whether to use normal or t
distributions. Moreover, even if population variance was unknown, we could
still have used a normal distribution via the distributional implications of CLT
(law of large numbers implies s

p→ σ).
Rather, the choice between t and normal distributions is affected by our de-

sire to be conservative. In general, the t-distribution is "fatter" than the normal
distribution. For smaller sample sizes, using the t-distribtuion is a conservative
approach, as we are less likely to reject the null if we use the t-distribution rather
than the normal due to the added uncertaintly introduced through estimating
σ2. Hence, the changes that one would make from part (a) would be to use the
t-dist instead of normal, and perhaps also reduce the size of the test (use a lower
α).
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