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1 Introduction 

In the previous handout, we considered only pure strategies. However, in reality players are always 

able to randomly choose between their pure strategies, but our “available strategies” didn’t allow 

for such mixing. More importantly, players may play his strategy against a player who is randomly 

drawn from a population consisting of heterogeneous strategies. How can we describe his payoffs 

in such a case when he is facing a “distribution” of strategies? 

Consider the “matching pennies game.” In this game each player plays one of two strategies, 

player 1 prefers if they play the same strategy, whereas player 2 prefers if they play opposite 

strategies. Notice that there are no pure Nash equilibrium. 

H T ⎛ ⎞ 
H 1, −1 −1, 1⎝ ⎠ 
T −1, 1 1, −1 

To address this concern, we will simply need to extend our definition of a strategy and a utility 

function, by assuming each player can choose a probability distribution over her strategies, and 

the player cares about her expected payoffs. The definition of Nash equilibrium also extends quite 

naturally, although the algorithm for finding a Nash equilibrium becomes a bit more complicated. 

2 Mixed Strategy Games 

Definition 1.4: A mixed strategy extension of a matrix form game < {Si}i=1,2, {Ui}i=1,2 > is 

defined by the tuple < {ΔSi}i=1,2, {Ui}i=1,2 > where: 
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• ΔSi is the set of mixed strategies available to player i (probability distributions over the 

strategies Si). Or,  
ΔSi = {αi|αi : si → [0, 1]s.t. αi(si) = 1} 

si∈Si 

This is just a really technical way of saying, “the probability i places on each strategy.” E.g.: 

for the matching pennies game, we can display the set of mixed strategies as 

ΔSi = {αi = (h, t)|h + t = 1 & h, t > 0} 

One such strategy is αi = (.5, .5), in which player i plays H half the time. By the way, 

sometimes people write αi = H. When they do this, they mean αi = (1, 0). 

• Ui is the expected payoff of a mixed strategy α ∈ ΔS. It is the expected utility from this 

mixed strategy, which is just a weighted average of the payoffs: 

 
Ui(α) = Ui(s)αi(s) 

s∈S 

E.g.: if αi = (.5, .5) for i = 1, 2, then U1(α) = U2(α) = 0. 

Definition 1.5: A mixed strategy α = (αi, α−i) is a mixed strategy Nash equilibrium if for 

each player i and every mixed strategy αi of player i, the expected payoff to player i is greater than 

or equal to the expected payoff to player i of (α' , α−i). More concisely, α is a mixed strategy Nash i

equilibrium if ∀i, ∀αi ∈ ΔSi: 

Ui(αi, α−i) ≥ Ui(α
' 
i, α−i). 

Next, we wish to find which mixed strategy players might choose as part of a Nash equilibrium. 

Start by recognizing the following. If i plays a mixing strategy in equilibrium, it must be the case 

that i is indifferent between the pure strategies she’s mixing over. Otherwise, i would prefer to 

play the preferred pure strategy with probability 1. Moreover, if i is playing a mixed strategy as 

part of a Nash equilibrium, it must be the case that this mixed strategy is better than any pure 

strategies she’s not mixing over. This implies that we can characterize the strategy i plays as part 

of a mixed Nash equilibrium by the pure strategies she mixes over. 

Proposition 1.1: A mixed strategy α is a mixed Nash equilibrium if ∀i∀si such that αi(si) > 0, 
'∀s

Ui(si, α−i) ≥ Ui(si
' , α−i) 
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The above proposition provides a simple algorithm for calculating mixed Nash equilibria. Which 

we will call the p-algorithm, which we will illustrate in an example. 

H T ⎛ ⎞ 
H 1, −1 −1, 1⎝ ⎠ 
T −1, 1 1, −1 

If player 1 is mixing between his two strategies, player two must assign probability p to H in 

such a way that player 1 gets the same expected utility for H and T 

U1(H, p(H)) + (1 − p)T ) = U1(T, p(H) + (1 − p)T )
 

so
 

pU1(H, H) + (1 − p)U1(H, T ) = pU1(T,H) + (1 − p)U1(T, T )
 

plugging in from the payoff matrix, we get
 

p · 1 + (1 − p) · (−1) = p(−1) + (1 − p) · 1
 

1 1So p = 2 . The same can be done to find q = , the probability that 1 plays H. 2 

3
 



  
 
 
 

 
 
 

MIT OpenCourseWare 
http://ocw.mit.edu 

14.11 Insights from Game Theory into Social Behavior 
Fall 2013 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



