
Wright-Fisher Process  
 
 

 
(as applied to costly signaling)  
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Today:  

 

1) new model of evolution/learning (Wright-Fisher) 

2) evolution/learning costly signaling 

 

(We will come back to evidence for costly signaling 
next class) 

(First, let’s remind ourselves of the game) 
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• Male either  
– farmer (probability p)  

– or teacher (probability 1-p) 

• Male chooses length of nail  

• Female observes nail, not  occupation 

• Female chooses whether to “accept” or 
“reject” male 
(perhaps based, at least party, on how beautiful she 
finds his nails.) 
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IF… 
 
1) Longer nails cumbersome for all males, more cumbersome for farmers 

 (-1/cm, -2/cm) 

2) Females benefit from accepting teachers, but not farmers 
 (+10, -10) 
3)      All males benefit from being accepted 
 (+5,+5) 
 
THEN 
 
Exists a Nash equilibrium s.t.: 
-farmers don’t grow nails 
-teachers grow nails to length l 
(where l is some number between 2.5 and 5 cm)  
-females accept those with nails at least length l 
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Now let’s discuss… 

 

Learning/Evolution 
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First:  

 

Why do we need learning/evolution?  
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We have argued costly signaling is Nash, but… 
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Why is Nash relevent?  
 

 

The Khasi villagers  NOT “choosing” what to find 
beautiful!  

 

Why would their notion of beauty coincide with 
Nash?  
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(Similar issue for evolutionary applications like 
peacock tails!) 
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We have seen that evolution/learning lead to 
Nash, but… 

1) may not converge 

2) there are multiple Nash. E.g… 
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”pooling”: good and bad senders send cheapest 
signal, and receivers ignore signal 

 

(no incentive to start attending to signal since 
noone sends, no incentive to start sending 
expensive signal bc ignored.)  

 

Maybe THIS is what evolves?  
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There are some UBER-rational arguments against 
this equilibrium: 
 
e.g. receiver “infers” that if anyone were to send a 
costly signal it MUST be the high type 
 
“universal divinity” 
(i.e. UBER-rational) 
 
What about when agents aren’t divine?  

12



Turns out evolution/learning gets you to costly 
separating! 

 

Not just separating, but “efficient separating” 

( i.e. l=2.5) 

 

(which is what god would have wanted.) 

 

(And empiricists too!) 
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Not trivial to show, replicator doesn’t do the 
trick! 

 

wright-fisher 

 

(wright-fisher will be REALLY useful! Also easy to 
code. And some added insights!) 
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Let’s start with the intuition 

 

(then will become clear why replicator doesn’t 
suffice) 
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Suppose we start in a world where no one has 
long nails, and no one finds them beautiful 
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Suppose there is some experimentation (or mutation): 
 
 Some farmers grow long nails 
 They QUICKLY change back (or die off) 
 
 Some teachers grow long nails 
 They TOO change back (b/c costly), but SLOWLY (b/c less costly) 
 
  
 Some females start to find long nails beautiful and “match”  with 
men who are beautiful 

They find themselves more likely to mate with teachers and 
MAINTAIN this sense of beauty (or are imitated or have more 
offspring) 
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Over time … 

 

 -teachers with long nails start to  perform 
 well because enough females like 
 them, counterbalancing the nail cost  

  

 -farmers with long nails NEVER do well 
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Eventually… 

 

 -All teachers have long fingernails 

 -All females like males with long fingernails 

 -No farmers have long fingernails 
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And once there, REALLY hard to leave! 
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Problem with replicator: 
 
CAN leave separating  
(just takes complicated “path”) 
 
CAN leave pooling too  
(just takes simpler path) 
 
(likewise for ostentatious separating) 
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Replicator can just tell us if NO paths leave.  

 

Can’t tell us if “more” paths leave.   

 

Doesn’t distinguish between “more stable” and 
“less stable”  
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THIS is why noone had solved this model before  

 

(Grafen 1990 is seminal paper; claimed to solve, 
but really just showed was Nash!) 
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Needs “stochastic” model! 

 

Wright-Fisher! 
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An ad from our sponsor: 

 

Program For evolutionary Dynamics 

 

Martin Nowak  

 

Drew Fudenberg 
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Let’s learn Wright-Fisher 

 

And in so doing, let’s see that leads to costly 
signaling  
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Simulations require numbers 

 

(although important to show robust! We will!)  

 

And easier with small number of strategies 

 

(take fewest needed to get insight, show robust 
later) 
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So, let’s assume… 
 
-1/3 good, 2/3rd bad 
 
-available signals: 0,1,2,3  
Costs: 0,1,2,3 vs 0,3,6,9 
 
-for each possible signal, 0,1,2,3, receivers either accept or 
reject that signal 
Senders get 5 if accepted 
receivers get 5 if accept good and -5 if accept bad 
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The Nash equilibrium are: 

1) ”pooling”: good and bad senders send 1, and 
receivers never accept any signal  

2) “efficient separating”: good sends signal 3, bad 
sends 1, and receiver accepts 3 (and 4?) 

3) “ostentatious separating”: good sends signal 4, 
bad sends 1, and receiver accepts only signal 4 

 

(prove this?) 
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Why four signals? 

 

1) Pooling 

2) Efficient separating 

3) Ostentatious separating 

4) Non-equilibrium separating  

 (bad sends 0, good sends 1) 
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Will simulate…  

 

(Proof?  

 

I don’t know how!  

 

But simulations VERY compelling! And robust! And 
simple to code! And give additional insight, e.g. into 
“why”) 
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Basics of Wright-Fisher: 
Start each of N players with randomly  chosen strategy 
 

In each generation: 

 -Payoffs determined  

 (e.g. all senders play against all receivers, so depends on frequency of each strategy) 

 -Fitness determined 

 (e.g. f=1-w+w*payoffs, or f=e^w*payoffs where w measures “selection strength”; 

 In replicator this doesn’t matter)  

 -Each individual has offspring proportional to fitness; N offspring born in total 

  -Offspring take random strategy with probability mu   

  (“mutation” or “experimentation) 

  -Otherwise, offspring take strategy of “mom”  

  (this can be “imitation”; ignores sexual reproduction) 

 -Mom’s generation dies 
 

Repeat for M generations  
 

Display time trend 
 

Perhaps repeat many such simulations, and display averages across all simulations 
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(notice as population gets large, this approaches 
replicator dynamic with mutations) 
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Let’s apply this to our costly signaling model… 

34



Start each of N players with randomly  chosen strategy 
 

In each generation: 

 -Payoffs determined  

 (e.g. all senders play against all receivers, so depends on frequency of each strategy) 

 -Fitness determined 

 (e.g. f=1-w+w*payoffs, or f=e^w*payoffs where w measures “selection strength”; 

 In replicator this doesn’t matter)  

 -Each individual has offspring proportional to fitness; N offspring born in total 

  -Offspring take random strategy with probability mu   

  (“mutation” or “experimentation) 

  -Otherwise, offspring take strategy of “mom”  

  (this can be “imitation”; ignores sexual reproduction) 

 -Mom’s generation dies 
 

Repeat for M generations  
 

Display time trend 
 

Perhaps repeat many such simulations, and display averages across all simulations 
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Start with 50 low quality senders, 25 high quality 
senders, 75 receivers with randomly  chosen strategy. 
E.g.: 

 -Low quality senders: 40 send 0 and 10 send 2 

 -High quality senders: 20 send 0 and 5 send 2 

 -Receivers: 70 accept ≥0, 5 only accept ≥2 
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Start each of N players with randomly  chosen strategy 
 

In each generation: 

 -Payoffs determined  

 (e.g. all senders play against all receivers, so depends on frequency of each strategy) 

 -Fitness determined 

 (e.g. f=1-w+w*payoffs, or f=e^w*payoffs where w measures “selection strength”; 

 In replicator this doesn’t matter)  

 -Each individual has offspring proportional to fitness; N offspring born in total 

  -Offspring take random strategy with probability mu   

  (“mutation” or “experimentation) 

  -Otherwise, offspring take strategy of “mom”  

  (this can be “imitation”; ignores sexual reproduction) 

 -Mom’s generation dies 
 

Repeat for M generations  
 

Display time trend 
 

Perhaps repeat many such simulations, and display averages across all simulations 
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Payoffs for low quality senders (present): 

 - If send 0, 70/75 chance accepted and pay no 
cost 

   payoff= .93*5 – 0 = 4.67 

 - If send 2, 75/75 chance accepted and pay 6 cost 

   payoff= 1*5 – 6 = -1 
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Payoffs for high quality senders (present): 

 - If send 0, 70/75 chance accepted and pay no 
cost 

   payoff= .93*5 – 0 = 4.67 

 - If send 2, 75/75 chance and pay 2 cost 

   payoff= 1*5 – 2 = 3 
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Payoffs for receivers (present): 

 - If accept ≥0, 50/75 chance accept bad type 

   payoff=  2/3 * -5 + 1/3 * 5 = -1.67 

 - If only accept ≥2, 5/75 chance match with good 
type, 10/75 chance match with bad type, and 60/75 
don’t match 

   payoff= .07 * 5 + .13 * (-5) + .8 * 0 = -0.3 
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Start each of N players with randomly  chosen strategy 
 

In each generation: 

 -Payoffs determined  

 (e.g. all senders play against all receivers, so depends on frequency of each strategy) 

 -Fitness determined 

 (e.g. f=1-w+w*payoffs, or f=e^w*payoffs where w measures “selection strength”; 

 In replicator this doesn’t matter)  

 -Each individual has offspring proportional to fitness; N offspring born in total 

  -Offspring take random strategy with probability mu   

  (“mutation” or “experimentation) 

  -Otherwise, offspring take strategy of “mom”  

  (this can be “imitation”; ignores sexual reproduction) 

 -Mom’s generation dies 
 

Repeat for M generations  
 

Display time trend 
 

Perhaps repeat many such simulations, and display averages across all simulations 
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For each, we let f=e^(.1*payoff) 

 

E.g. for low quality senders who send 0 

 

 payoff = 4.67 

 f = e^(.1*payoff)=1.60 
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Start each of N players with randomly  chosen strategy 
 

In each generation: 

 -Payoffs determined  

 (e.g. all senders play against all receivers, so depends on frequency of each strategy) 

 -Fitness determined 

 (e.g. f=1-w+w*payoffs, or f=e^w*payoffs where w measures “selection strength”; 

 In replicator this doesn’t matter)  

 -Each individual has offspring proportional to fitness; N offspring born in total 

  -Offspring take random strategy with probability mu   

  (“mutation” or “experimentation) 

  -Otherwise, offspring take strategy of “mom”  

  (this can be “imitation”; ignores sexual reproduction) 

 -Mom’s generation dies 
 

Repeat for M generations  
 

Display time trend 
 

Perhaps repeat many such simulations, and display averages across all simulations 
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How do we allocate offspring:  
 Fitness for low quality senders: 
 - If send 0 payoff=4.67,  f=1.60 
 - If send 2 payoff=-1,  f=.90 
 
 For any given offspring, chance offspring 10*.9/(40*1.6 + 10*.9) has a 

signal 2 mother. O.w. must have signal 0 mother.  
 For any given offspring, chance that she is signal 2 is chance that mother is 

signal 2 and not a *(1m-u)+mu/2 
 Probability of having exactly X offspring who send signal 2 and 0 who send 

signal 0, is the binomial with probability of “success” of p=10*.9/(40*1.6 + 
10*.9)*(1-mu)+mu/2 and 50” trials.”  

 (50 choose X) *[ p^X+ (1-p)^(50-X) 
 

(With more than 2 strategies, we must use the multinomial distribution) 
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Start each of N players with randomly  chosen strategy 
 

In each generation: 

 -Payoffs determined  

 (e.g. all senders play against all receivers, so depends on frequency of each strategy) 

 -Fitness determined 

 (e.g. f=1-w+w*payoffs, or f=e^w*payoffs where w measures “selection strength”; 

 In replicator this doesn’t matter)  

 -Each individual has offspring proportional to fitness; N offspring born in total 

  -Offspring take random strategy with probability mu   

  (“mutation” or “experimentation) 

  -Otherwise, offspring take strategy of “mom”  

  (this can be “imitation”; ignores sexual reproduction) 

 -Mom’s generation dies 
 

Repeat for M generations  
 

Display time trend 
 

Perhaps repeat many such simulations, and display averages across all simulations 
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(Need to figure out good way to represent info 
visually!) 
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Average the signal values for each sender type and 
report for each generation in a graph 
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Efficient Separating equilibrium looks 
like this: 
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or this (b/c mutants): 
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Pooling equilibrium looks like this: 
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Ostentatious separating equilibrium 
looks like this: 
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Simulation Results? 
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Here is an example time trend 

mu w 
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Notice almost always at efficient separating 
(although does leave sometimes) 

mu w 
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Freak occurrence?  

 

Or almost always at separating?  
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For any given generation: 

 

We can “categorize” the population according 
to:  

1) The average signal of high (averaged over all 25 
high players, in that generation) 

 E.g., If 24 high types send signal 2 and 1 sends signal 3, 
 then the average signal is 2.04 

2) “Correlation” between high and low signals 
 E.g., (1/25,0,24/25,0)* (50/50,0,0,0)=4% 
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Results – Evolution/Imitation 
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Notice that the 3 equilibrium can be plotted on this graph as follows: 
 
1) Pooling:  
high sends signal 0, low sends same signal  
 (0,1) 
 
2) Efficient Separating:  
high sends signal 2, low sends signal 0  
(2,0) 
 
3) Ostentatious Separating:  
high sends signal 3, low sends signal 0 
(3,0) 
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Results – Evolution/Imitation 

X 

X X 
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Let’s run this simulation 20 times for a million 
generations each.  
 
Let’s count how frequently (in terms of total number of 
generations) the population is at each “point” in this 
graph  
 
We can display frequency using color code 
(yellow=frequent, green=infrequnt) 
 
(Since always some “experimentation,” points = “boxes,”) 
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Results – Evolution/Imitation 

X 

X X 
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Results – Evolution/Imitation 
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Why? 
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Here is an example time trend 
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As soon as receiver drifts to accepting 2 or  3  

Enough receivers must have “neutrally drifted”  
to accept 1 so worth for good but not bad types 

Since good but not bad sending 1, receivers  start accepting 1, to point where bad start sending  

Very quickly 
After bad start  
Sending 1,  
receivers stop  
Accepting 1 
 
If in meantime 
Receivers stop 
Accepting 2 
(by drift), then 
Both good and  
Bad better  
Sending 0 

As soon as receiver drifts to 
accepting 1 or 2   
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Must leave efficient separating via … 
1) receiver drift to accepting 1 
2) good send 1 
3) Bad send 1, but beforehand receivers drift  away from 
accepting 2  
 
To leave pooling, just need… 
1) Receiver drift to accept 2 or 3 

 
To leave ostentatious separating, just need… 
1) Receiver drift to accept 2 or 1 
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Here is an example time trend 
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Robust: 

 

 

68



Robust? You will show in HW: 

 

1) Doesn’t depend on parameters chosen for 
payoffs  

2) Doesn’t depend on details of learning rule or 
evolutionary rule (e.g. if fitness is linear) 

3) Still works even if REALLY small or FAIRLY large 
“experimentation”  
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Does it work for a continuum of signals (not just 
0, 1, 2, 3)  

 

And/or continuous actions (not just 
accept/reject) for the receiver? 

 

This would make a great final project 
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What about other models of communication?  

 

(e.g. if not all senders want receiver to take 
“highest” action, but instead higher senders 
want receivers to take higher action, and 
receivers have similar preferences accept always 
want slightly less high.) 
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Reinforcement Learning Model 
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7 

5 

7 

5 

T=0 T=1 

Reinforcement Learning 

More successful behaviors  
held more tenaciously 
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Basics of Reinforcement Learning: 
Each of N players is assigned initial “values” for each strategy.  

 

In each period 

 - Players adjust their values based on their payoffs  

 -values determine propensities  

 -choose strategy proportional to propensity 

 - Payoffs determined 

    

Repeat for T periods 

 

Display time trend 

 

Perhaps repeat many such simulations, and display averages across all 
simulations 
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Let’s take a closer look at how the “values” adjust: 
 
vt+1 (x)= vt + a*(realized payoff –vt (x) 
 
Small a means adjust slowly 
(a must be between 0 and 1) 
(can also limit “memory”) 
 
Value increases if payoffs higher than value.  
(sometimes only for strategy played, sometimes for all) 
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Let’s take a close look at how propensities determined by values: 
 
 Propensity(x) = e^(g*v(x)) / [e^(g*v(x)) + e^(g*v(y))] 
 
  
 - y is another strategy  
 (assume only 2 for now) 
 
 - g determines “selection strength” 
 
 -need not be exponential 
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Applying this to our costly signaling case… 
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Results… 
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Results – Reinforcement Learning 
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Even  if start at pooling… 

 

Always get to efficient separating, and stay 
there.   
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