12.950 wrapup

Parallel Programming:
MPI with OpenMP,

MPI tuning,
parallelization concepts
and libraries

Parallel Programming for Multicore Machines Using OpenMP and MPI

Final day agenda

e Hybrid MP1+OpenMP programming

 MPI Performance Tuning & Portable
Performance

« Performance concepts and Scalability
« Different modes of parallelism

o Parallelizing an existing code using MPI

e Using 3" party libraries or writing your own
library

Parallel Programming for Multicore Machines Using OpenMP and MPI

Combining MPI with OpenMP

Hybrid Programming:
Combining
MPI with OpenMP

Parallel Programming for Multicore Machines Using OpenMP and MPI

Acknowledgements
e Lorna Smith, Mark Bull (EPCC)

 Rolf Rabenseifner, Mathias Muller (HLRS)
* Yun He and Chris Ding (LBNL)

« The IBM, LLNL, NERSC, NCAR, NCSA, SDSC
and PSC documentation and training teams.

e The MPI Forum

o | try to attribute all graphs; please forgive any
mistakes or omissions.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Questions

e What is Hybrid Programming?

« Why would we care about it?

 How do we do It?

* \When do we attempt it?

e |s it not delivering the performance promised?

o Alternatives

Parallel Programming for Multicore Machines Using OpenMP and MPI

Recap

e Distributed memory programming:

— Distinct processes, explicitly partaking in the pairwise
and collective exchange of control and data messages
(implicit synchronization)

— No way to directly access the variables in the memory
of another process

e Shared memory programming:

— Multiple threads or processes sharing data in the
same address space/shared memory arena and
explicity synchronizing when needed

Parallel Programming for Multicore Machines Using OpenMP and MPI

Hybrid Programming

* S0, on a cluster of N SMP nodes, each having M
processors can we combine the two paradigms?

— Shared memory for calculations within the node

1 process, M threads per node
* P processes, M/P threads per node
 M*N threads, implicitly communicating when outside the node

— Distributed memory for problems spread over many nodes.

— This can be done explicitly (directed by the user) or
Implicitly (handled behind the scenes by a runtime library).

Parallel Programming for Multicore Machines Using OpenMP and MPI

Why care?

e You have a threaded code and you'd prefer to
have some code reuse scaling up to the cluster

« The MPI code has scalability problems due to
communications scaling as O(P*) and cutting P
by half or even to O(P) is seen as helping

* |t appears as a more efficient way to exchange
Information between processes on the same node

 For algorithms with two-level load-balancing, the
Inner level may be easier to do with threads

Parallel Programming for Multicore Machines Using OpenMP and MPI

Why copy on an SMP/ccNUMA?

sually Tast message exchange in an SMP system
makes use of a shared memory area which
processes can access to read/write data

e Sometimes memory protection Is overridden
using a memory bypass... (kernel copy mode)

Parallel Programming for Multicore Machines Using OpenMP and MPI

Topology mapping & network saturation
o Fitting application

topology onto

| | I | I | I |

8o HwokuuHizH1zH1ak 15 hardware topo'ogy
Round-robin — X 14

o HeHzHaHaHsHelz — Topologies for most
8F 90 uR2R18R115 MPI implementations
equenta — do not provide useful
OH1IM2H3f4MH5M6H -

s il sl ? ? T re-map:)”']g

89 =10~11=12=13 =14 =15

Optimal ? X - Wanted: Minimizing
— Slow inter-node link - -

communications over

Figure by MIT OpenCourseWare.

slower links
src:HLRS

 |f many (or even more than one) processes need to

communicate over the slower link network Is saturated
Parallel Programming for Multicore Machines Using OpenMP and MPI

Motivations

 Multicore machines abound:

— Seems far more natural to share memory between
cores on the same chip avoiding message passing.

» Waste of system resources:

- Even with Domain Decomposition some memory gets
replicated (plus MPI system buffer memory)

- Memory bandwidth waste from extra copies
— Cache pollution from message passing
— O/S overhead managing processes (heavyweight)

Parallel Programming for Multicore Machines Using OpenMP and MPI

Motivations (cont)

e MPI scaling issues:

— Collective communication scalability issues
— Load imbalance with larger # of processes
— Increasing contention for network resources:

 Sharing of interface, network link bandwidth limit
 Latency becomes less predictable

— For constant problem size (weak scaling) message
sizes get smaller:

e More latency dependence
o Less efficient use of the network

Parallel Programming for Multicore Machines Using OpenMP and MPI

Basic concept

2D Array
MPI
Process 0 Process 1 Process 2 Process 3
OpenMP OpenMP OpenMP OpenMP
Thread 0 Thread 0 Thread 0 Thread 0
Thread 1 Thread 1 Thread 1 Thread 1
Thread 2 Thread 2 Thread 2 Thread 2

Figure by MIT OpenCourseWare.

Parallel Programming for Multicore Machines Using OpenMP and MPI

src:EPCC

Pros and Cons

e Memory savings « Performance varies
» Better load balancing — Optimization is harder
opportunities « MPI communication may
e Less (larger?) off-node Not be threaded
MPI messages e Thread woes: false
« Scaling opportunities sharing, etc.
~ N/M processes o Extra synchronization

Introduced with OpenMP
- Fork/Join & barrier

e Hardware speeds

Parallel Programming for Multicore Machines Using OpenMP and MPI

Basic shared memory options

* OpenMP e Pthreads
- Evolving standard - POSIX Standard
— Easier to use — Cumbersome to use
e Can be combined with But full flexibility

autoparallelization _ Heavyweight

 Restricted flexibility
— Designed for HPC

— Easier to combine with « But on Linux systems

3" party code at least, it lies below
the OpenMP layer.

— Designed for systems
apps and not HPC

Parallel Programming for Multicore Machines Using OpenMP and MPI

So when to do 1t?

e Codes where MPI scaling suffers when OpenMP
does not for small # of procs

— If both scale bad but for different reasons it may still
be beneficial to go hybrid as one may compensate for
the other one's deficiencies (improbable but possible)

« Severe load imbalance might become less
Important for a hybrid code.

— If oversubscription and dynamic increase of threads
are allowed, load imbalance handled for large SMPs.

« Algorithm has finite scalability for MPI

Parallel Programming for Multicore Machines Using OpenMP and MPI

When to do 1t cont.

o |f the algorithm is by design fine-grained, a two-
level design can relegate the coarse grain to MPI

« Replicated data are a bottleneck to solving larger
problems (replication reduced within the node)

 Existing OpenMP code can be easily extended to
MPI at the outermost loop level. (Rare IMHO)

 MPI implementation Issues:

— Restricted # of processes in each node for fast comms
— Slow intra-node MPI performance

Parallel Programming for Multicore Machines Using OpenMP and MPI

A multitude of options

Parallel programming models
on hybrid platforms

Pure MPI Hybrid MPI1+OpenMP OpenMP: only
one MPI process MPI: inter-node communication distributed virtual
on each CPU OpenMP: inside of each SMP node shared memory

No overlap of Comm. + Comp. Overlapping Comm. + Comp.
MPI only outside of parallel regions MPI communication by one or a few threads

of the numerical application code while other threads are computing

Masteronl Multiple/onl Multiple more than
y P y Funneled MPI only P
MPI only outside « appl. threads one thread may
: L on master-thread .
of parallel regions e inside of MPI communicate

Funneled & reserved
reserved thread for
communication

Multiple & Reserved
reserved threads for
communication

Multiple with full
load balancing

Funneled with full
load balancing

src: HLRS Figure by MIT OpenCourseWare.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Writing hybrid code

« From a sequential code,

— first parallelize with MPI
— and then add OpenMP (at the same or different level)

 From an MPI code add OpenMP

e From an OpenMP code, think of a higher level
parallelization strategy (as If it were sequential)

« Consider different combinations of OpenMP
threads per MPI task and test various OpenMP
scheduling options

Parallel Programming for Multicore Machines Using OpenMP and MPI

Master-only hybrid code

e Most obvious strategy Is Master-only:

— Take an MPI code and parallelize using OpenMP the
code in between MPI calls:

« Usually done at a fine (loop) level — the easiest approach

o Better still if done at a SPMD level with fewer parallel
regions and synchronization points

« We assume that the potential for parallelism within each
MPI process is substantial:

- Large computational work in loops
- Natural two-level domain decomposition can be extracted
— Little communication/synchronization between threads needed

Parallel Programming for Multicore Machines Using OpenMP and MPI

Matrix-vector multiplication

Consider matrix-vector multiplication: A.b =¢

First, the serial loop:

DO j=1,ncols
DO 1=1,nrows
c(i)=c(i)+a(1,])*bl3)
END DO
END DO

Second, the distributed-memory version:

DO j=1,n loc ! My local part
DO 1i=1,nrows
c(i)=c(1i)+a(i,3) *b(1)
END DO
END DO

domain decomposition for distributed-memory
version (n_loc = ncols/num_ncdes)

Figure by MIT OpenCourseWare.

CALL MPI REDUCE SCATTER(c) ! Update c (global sum and broadcast)

src:IBM

Parallel Programming for Multicore Machines Using OpenMP and MPI

Matrix-vector multiplication cont.

c=0.0 - sets global copy of ¢ to zero
| SOMP PARALLEL shared (c), private {c:_lm:}

c loe=0.0 - creates local copy of ¢

DO 3=1,n loc and sets 1t to zero

'SOMP DO PRIVATE (1)
DO 1=1,nrows
¢ loc(1i)=c loc(i)+a(1i,])*b(])
END DO
| SOMP END DO NOWAIT
END DO

| SOMP CRITICAL

DO 1i=1,nrows
c(i)=c(1i)+c_loc (i)

END DO

| SOMP END CRITICAL

| SOMP END PARALLEL

CALL MPI_REDUCE_SEATTER (c)

In the critical section, a
single thread updates the
global copy of c.

~aif

src:IBM

Parallel Programming for Multicore Machines Using OpenMP and MPI

Example use

» Make sure you propagate OMP_NUM_ THREADS
to all your processes (via mpirun/mpiexec or dotfile)

— Oruse OMP_SET NUM_ THREADS or hardcode them
e For production do not oversubscribe a node:

— (# of MPI procs per node) x (# of OpenMP threads per
MPI proc) <= (number of processors in a node).

- For “fat” SMP nodes both numbers above are likely to be
> 1 and you may want to leave a processor free to handle
O/S tasks.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Savings In communications

]] o Timings for the Computation and
Ratio of Computation and Communication Communication Part
100% 0.12000
80% 0.10000 .
— 0.08000 .
60% S
=
@ 0.06000 .
40% £
F 0.04000 .
20%
’ 0.02000 | -
0% _ . - - 0.00000 :
Hybrid Pure mpi Hybrid Pure mpi Hybrid 40K Pure mpi 40K
10K 10K 40K 40K 8 Nodes=64 Procs 64 Procs
(O Communication @ Computation I

Figure by MIT OpenCourseWare.

src:Hitachi&LRZ/RRZE

Parallel Programming for Multicore Machines Using OpenMP and MPI

Working with master-only

« MPI communications outside parallel regions is
always safe.

— High thread startup-winddown overhead
« Master region on the other hand needs a barrier:

#pragma omp barrier /* this may not be necessary */
#pragma omp master /* other threads idle waiting for the master */

MPI_Send(...)

#pragma omp barrier /* needed to ensure other threads can modify
the send buffer */

Parallel Programming for Multicore Machines Using OpenMP and MPI

Common Master-only Problems

o |dle (and/or sleeping) cpus
 Utilizing the full inter-node bandwidth

— Less but larger inter-node messages
— Contrast with the saturation problem for MPI

e Both are undesirable scenarios

* Fine grain OpenMP problems

— False sharing
— Synchronization (that also causes cache flushes)

e On the other hand: minimize programming effort

Parallel Programming for Multicore Machines Using OpenMP and MPI

Beyond master only

o |f the MPI implementation is thread-safe for use
by multiple threads at the same time, all threads
can partake in message passing

« Otherwise less restrictive variants of master-only
for portable & correct code- call MPI_* from:

- Within MASTER regions: same as Master-only with
quite possibly less fork-join overhead, explicit barrier

- Within SINGLE regions: dangerous, implicit barrier,
— Within CRITICAL regions: safe for all to partake

Parallel Programming for Multicore Machines Using OpenMP and MPI

MPI-2 support

« MPI-2 Initialization for threaded MPI processes

- MPI_Init_thread(argc, argv, required, provided)
o Test for required, check value in provided
« MPI_THREAD SINGLE: one user thread
« MPI_THREAD FUNNELED: master-only
« MPI_THREAD_ SERIALIZED: serialized MPI calls
« MPI_THREAD MULTIPLE: many concurrent calls.
e Use instead of MPI_Init() from the “main thread”
e Match with MPI_Finalize() from the same thread
 Provided depends on how library used, runtime args etc.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Single vs. Funnelled vs. Serialized

'SOMP PARALLEL DO '$SOMP PARALLEL 'SOMP PARALLEL
'$SOMP DO '$SOMP DO
do 1=1,1000 do 1i=1,1000 do i=1,1000
a(i) = b(1) a(i) = b(i) a(i) = b(1)
end do end do end do
'SOMP END PARALLEL DO 'SOMP END DO 'SOMP END DO
'$SOMP MASTER 'SOMP SINGLE
call MPI_RECV(b,...) call MPI_RECV(b,...) call MPI_RECV(b,...)
'$SOMP END MASTER 'SOMP END SINGLE
'SOMP PARALLEL '$SOMP BARRIER
'$SOMP DO '$SOMP DO '$SOMP DO
do 1=1,1000 do 1i=1,1000 do 1i=1,1000
c(i) = b(i) c(1) = b(i) c(i) = b(i)
end do end do end do
'SOMP END DO NOWAIT 'SOMP END DO NOWAIT 'SOMP END DO NOWAIT
! do more work ! do more work ! do more work
'$SOMP END PARALLEL '$SOMP END PARALLEL 'SOMP END PARALLEL

Parallel Programming for Multicore Machines Using OpenMP and MPI

Overlapping computation with
communication

SOMP PARALLEL « Designate “main” or first
doisL 1000 thread to reach the
end do communication point as the
'$SOMP END DO NOWAIT
ISOMP SINGLE MPI1 thread.
call MPI_RECV(,...)
'$SOMP END SINGLE NOWAIT - -
1SOMP DO SCHEDULE (GUIDED,n) o Dynamlc or gUIde schedule
do 1=1,1000
D o Other solution: Spread work
SOMPEND DO that has no dependency on
soMP END PARALLEL T communications among

threads statically

Parallel Programming for Multicore Machines Using OpenMP and MPI

Thread reservation

 Easier way to overlap communication with
computation

 Either reserve the master (funnelled) or several
threads for communication

« \Worksharing directives break down — need to
distribute the work among the remaining threads
manually

o |f the ratio of Tcomm/Tcomp doesn't match the
distribution of thread roles end up with idle time

Parallel Programming for Multicore Machines Using OpenMP and MPI

Static work scheduling

#pragma omp parallel private (i, mythread, numthreads, myrange, mylow)
{
mythread = omp_get_thread_num();
numthreads = omp_get_num_threads();
if (mythread < Nreserved) {
/* communication work */
} else {
myrange = (high-low+1)/(numthreads-Nreserved);
extras = (high-low+1)%(numthreads-Nreserved);
if (mythread-Nreserved < extras) {

myrange++;
mylow = low + (mythread-Nreserved)*myrange;
} else {

mylow = low + (mythread-Nreserved)*myrange + extras;

}
for 1=mylow; i<mylow + myrange; 1++)
{ /* computational work */ }

Parallel Programming for Multicore Machines Using OpenMP and MPI

Overlapping Challenges

« an application problem
— separation of local or halo-based code (hard)
e a programming problem

— thread-ranks-based vs. OpenMP work-sharing
— Beware of race conditions

e a load balancing problem,
— If only some threads communicate / compute
 no ideal solution — alternatively avoid it and try:
- SPMD-model & MPI_THREAD_ MULTIPLE

Parallel Programming for Multicore Machines Using OpenMP and MPI

MPI_THREAD_MULTIPLE details

« Make sure that different threads communicating
are using different communicators or clearly
different tags (as the source process would
always be the same).

« \When using collective operations make sure that
on any given communicator all threads call the
MPI routines in the same order.

 Bi-directional exchanges are unlikely to benefit
much from this model.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Halo exchanges

:EPCC

Src

Figure by MIT OpenCourseWare.

i N
: RN
[} . . ¢— S
[} ’

i N H 9 0 IRV,
“ — T g
1 s, ’ . s Q
1 N N S
i o
:

[}

[}

[}

[}

' S

[} [y

[}

! - -

m

[}

M d
fmmmmmmmmmmmmm e oo ~
m o
“ [
i 3 3)
; < — 10 "%
t X ? A &
1 Seee? - o
t -
! H H o
[}

[}

[}

[}

[}

[}

{ s

m o ."I". —

[} . A

[} .

! - -

m

[}

\

process =

process =

1

1

<—>» Message passing
<— Read/ Write

Parallel Programming for Multicore Machines Using OpenMP and MPI

Deciding for hybrid

e There Is an obvious way to have two-level //

- Single level parallel codes can be converted to dual
level but usually the performance Is not any better

e The resulting code should not be a nightmare to
code and maintain

— Master-only usually clean but not always performing
— Pthread code can be very ugly to upkeep

 Early investigations at least should show that it is
similar in performance to an all-MPI code

Parallel Programming for Multicore Machines Using OpenMP and MPI

Tests for hybrid

e Test small scale OpenMP (2 or 4 processor) vs.
all MPI to see difference in performance.

- We cannot expect OpenMP to scale well beyond a
small number of processors, but If it doesn't scale
even for that many it's probably not worth it.

e Test the network to see whether one set of MPI
processes can saturate the bandwidth between
two nodes

— Master-only allows for cleaner code usually.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Performance 1ssues

e Can be a success story:

- MMD5 weather forecasting mode
e 332MHz IBM SP Silver (PPC604¢) nodes:

- Very imbalanced, slow network for the processors
e 64 MPI procs: 1755 secs (494 comm secs)

e 16(x4) MPI procs: 1505 secs (281 comm secs)

* Very frequently however hybrid ends up being
slower than pure MPI for the same number of
processors. Easy to be discouraged by following
the literature.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Extending scalability

—O— pcols=16, hybrid, load bal., upd. dycore
—e— pcols=16, hybrid, load bal., upd. dycore and cIm

A
40 Performance evolution of NCAR community atmospheric model
CAM2.0, EUL dynamical core, T42L26

35

z 304
©
2

o 257
5
>

= 20 A
2
s

g 15 -
=

10

5 -

o
0 (i) CI) T T T T T T T >
1 2 4 8 16 32 64 128 256
Processors
p690 cluster (32-way Turbo node, 1.3 GHz processor)
pcols=128, MPI-only —o— pcols=16, MPI-only
—e— pcols=16, MPI-only, load bal. pcols=16, hybrid, load bal.

Pat Worley ORNL
T421.26 grid

128 longitude

64 latitude

26 vertical

MPI latitude-only
decomposition

Figure by MIT OpenCourseWare.

Parallel Programming for Multicore Machines Using OpenMP and MPI

NAS Parallel Benchmarks

Overall comparison: Benchmarks
1.6
1al 4-way WH2 nodes - Class A
S 12}
c
8 1t
o
X o8¢t
o
Z 06}
o i
s 04
0.2
O 1 1 1
cg ft lu mg
1 2 4 8 16 32
Benchmarks
- LU and MG : MPI is better. LU outperforms
- FT: MPI1+OpenMP is better
- CG: MPI better for few nodes and worse for more nodes
src: Franck Cappello & Daniel Etiemble @Iri.fr Figure by MIT OpenCourseWare.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Which approach Is faster?

» Pure MPI versus
Hybrid MPI+OpenMP (Masteronly)

« What's better?
- It depends on?

35
30
25
20
15
10

5

0

Integration rate [Years per day]

Explicit C154N6 16 Level SEAM:

NPACI Results with

7 or 8 processes or threads per node

SEAM EXP: HYBRID § ej—

SEAM EXP: 7 MPI —8&—

e -
i .-l""

7o

0

200 400 600 800 1000
Processors

Explicit/Semi Implicit C154N6 SEAM
vs T170 PSTSWM, 16 Level, NCAR

25 T T T T T
SEAM EXP: 4 MP] —&—
20 SEAM EXP: HYBRID 4 esi— il
- -l-" A
o

PSTSWM: 4 I"-riPl =

.-'/
/

15]

10 [7
5 | I
E"-_-ﬁ
0 P
0 100 200 300 400 500 00

Integration rate [Years per day]

Processors

Courtesy of Rolf Rabenseifner, HLRS, University of Stuttgart. Used with permission.

Figures: Richard D. Loft, Stephen J. Thomas,
John M. Dennis:

Terascale Spectral Element Dynamical Core for
Atmospheric General Circulation Models.
Proceedings of SC2001, Denver, USA, Nov. 2001.
hitp:/iwww.sc2001.org/papers/pap.pap189.pdf
Fig. 9 and 10.

Courtesy of Rolf Rabenseifner, HLRS, University of Stuttgart. Used with permission.

Parallel Programming for Multicore Machines Using OpenMP and MPI src:HLRS

No panacea (perfect solution)

« MPI only problems e MPI-OpenMP problems
— Topology mapping — Sleeping threads (master-
~ Unnecessary intra-node only)

communication — OpenMP overhead
— Network link saturation » Thread fork/join

 Cache flushing on
synchronization

« Worse spatial locality

— Utilizing the full inter-node
bandwidth

Parallel Programming for Multicore Machines Using OpenMP and MPI

Tuning Opportunities

e Speed up MPI routines:

— Threads may copy non-contiguous data into
contiguous buffers (instead of derived datatypes)

— Use multiple threads communicating to utilize inter-
node bandwidth

— Better still employ multi-threaded MPI library.

— Otherwise use only hardware that can saturate
network with 1 thread

 For throughput use 1dling CPUs for “niced” apps

Parallel Programming for Multicore Machines Using OpenMP and MPI

The Rabenseifner tests

Inter-node bandwidth per SMP node, accumulated over its CPUs,)

on IBM at NERSC (16 Power3+ CPUs/node)

GO0

500

400

More than 4 CPUs
per node needed

—»é— 8x16 CPUs, Hybrid
Multiple,12/16 CPUs Stride 1

— 8x16 CPUs, Hybrid Multiple,

to achieve full
inter-node

bandwidth

With 3 CPUs
similar to
pure MPI

Accumulated bandwidth per SMP node

100

6/16 CPUs Stride 1

©— 8x16 CPUs, Hybrid Multiple,
4/16 CPUs Stride 1

A— 8x16 CPUs, Hybrid Multiple,
3/16 CPUs Stride 1

—&— 8x16 CPUs, Hybrid Multiple,
2/16 CPUs Stride 1

- ¢ - 8x16 CPUs, Hybrid Multiple,
2/16 CPUs Stride 4

—8— 8x16 CPUs, Pure MPI,
horizontal + vertical

—fll— 8x16 CPUs, Hybrid
Masteronly, MPI: 1 of 16CPUs

1E+5

1E+4 1E+5

- The second CPU doubles the

accumulated bandwidth

Message size (used with pure MPI on each CPU)

Courtesy of Rolf Rabenseifner, HLRS, University of Stuttgart. Used with permission.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Myrinet clusters for Master-only

Inter-node bandwidth per SMP node, accumulated over
its CPUs, on HELICS, 2 CPUs / node, Myrinet

« 1 CPU can achieve

. i full inter-node bandwidth
3 120 « Myrinet-cluster is well
g E.T;' 100 prepared for hybrid |
T E 00 masteronly programming
8 o ,{9'” i
T8 g0 ~¢— 64x2 CPUs, Hybrid Multiple,
=y MPI: 2 of 2 CPUs
5
3 MPI: 1 of 2 CPUs
< 7 —— 64x2 CPUs, Pure MPI,
0 , , . . horizontal + vertical

1E+02 1E+03 1E+04 1E+05 1E+06 1E+0O7
src:HLRS

Message size (used with pure MP1on each CPU)

Courtesy of Rolf Rabenseifner, HLRS, University of Stuttgart. Used with permission.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Myrinet clusters for Master-only cont

Inter-node bandwidth per SMP node, accumulated over its CPUs,
on HELICS, 2 CPUs / node, Myrinet

140 « 1 CPU can achieve

a full inter-node bandwidth
s 120 . .
o « Myrinet-cluster is well
2 100 prepared for hybrid
= masteronly programming
2@ go
T £,
%
=g 60 —-128x2 CPUs, Hybrid Multiple,
S8 2/2 CPUs Stride 1
E 40 -B-128x2 CPUs, Hybrid Masteronly,
5 MPI: 1 of 2 CPUs
= 20 New Fext
< ——128x2 CPUs, Pure MPI,

0 horizontal + vertical

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 src:HLRS

Message size (used with pure MPI on each CPU)

Courtesy of Rolf Rabenseifner, HLRS, University of Stuttgart. Used with permission.

Parallel Programming for Multicore Machines Using OpenMP and MPI

src:HLRS

*) Bandwidth per node:
totally transferred bytes on the network
/ number of nodes / wall clock time

Comparing inter-node bandwidth
with CPU performance

o Courtesy of Rolf Rabenseifner, HLRS, University of Stuttgart. Used with permission.

All values: Master | pure Master- | pure memo- | Peak & | max.inter | nodes*CPUs
aggregated over one | -only, | MPI, only bw / | MPI, ry Linpack j”Oqu t:g'-s
SMP nodes. *) inter- inter- max. intra- band- | perfor- |’ pe::a”{
mess. size: 16 MB node node intra- node | width | mance Eaerr o

Y2 MB [GB/s] | [GB/s] | node bw | [GB/s] | [GB/s] | Gflop/s B/Flop

Cray X1,shmem_put 927 1234 75% 33.0 136 51.2 0.241]18 *4 MSPs
preliminary results 4503 0.274

Cray X1, MPI 4.52 5.52 82 % 19.5 136 51.2 0.108 |18 * 4 MSPs
preliminary results 45.03 0.123

NEC SX-6 7.56 4981 100 % 78.7 256 64 0.118 |4 * 8 CPUs
global memory 93.7%) 61 83 0 122

NEC SX-5Be 2.27 2.50 91 % 35.1 512 64 0.039|2*16 CPUs

local memory a) 60.50 0.041 | a) only with 8

Hitachi SR8000 045| 0.91| 49% 5.0 |35 store 8| 0.114|8*8CPUs
oa 6.82 0.133

IBM SP Power3+ 0.16 | 0.577)| 28 % 2.0 16 24 0.023 | 8 *16 CPUs
14.27 0.040

SGI 03000, 600MHz | 0.43%) | 1.74%) 25 % 1.73%) 4.8 0.363 | 16 *4 CPUs
3.64 0.478

SUN-fire (prelimi.) 0.15 0.85 18 % 1.68 4 *24 CPUs

HELICS Dual-PC 0.1 1+8 0.11+9 100 % 0.104 2.80 0.043 1128 *2 CPUs

cluster with Myrinet)) ") 1.61 0.074

Alternatives

e So coding hybrid codes involves:

1)More complicated, two-level logic

2)Further opportunities for bugs with sloppy coding
3)Unexpected performance pitfalls

4)Extra performance variation platform to platform

o \What alternatives are there for clusters?

- MPI + multithreaded parallel libraries

— Scalable OpenMP: If one cares the most about (1) &
(2) and one already has an OpenMP code available

Parallel Programming for Multicore Machines Using OpenMP and MPI

Multi-threaded parallel libraries

e Master-only paradigm only the drudgery of the
OpenMP code moves inside the library

« Example: MPI code calling multithreaded
LAPACK/BLAS library on each process

— Useful provided there is enough work to go around
— Allows the use of fast direct solvers

« Hybrid code with master-only segment calling
multithreaded library. Problems when other
multithreaded parts call serial version of library.

Parallel Programming for Multicore Machines Using OpenMP and MPI

SDSM

 Software Distributed Shared Memory:

— A user-level runtime system that creates the illusion
of a shared memory system on a set of distributed
memory machines .

— aka VDSM or SVM (V for Virtual), constrast with
HDSM (Hardware - aka simply as DSM, cc-NUMA
etc.) as Is the case of most modern Unix servers (IBM
Regatta & Squadron, SGI Altix, HP Superdome, Sun
Sunfire etc) and multiprocessor AMD Opteron
servers.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Enhanced OpenMP runtimes

e Enhanced OpenMP runtime, usually built on top
of some distributed shared memory library that:

— detects accesses to memory at remote nodes and

— behind the scenes fetches a local copy of that
memory location.

— Handles all cache-coherence 1ssues

— Essentially replaces user-level message passing with
remote gets and puts of variables, usually at a large
granularity (most commonly memory page level).

Parallel Programming for Multicore Machines Using OpenMP and MPI

How It usually works

..proCesses..

- - - - ..memories.. -

Local copy of memory page Remote memory page
containing cache line containing cache line

Parallel Programming for Multicore Machines Using OpenMP and MPI

Disadvantages

e Depending on how relaxed the cache coherence
protocol is (and the locality of memory accesses),
SDSM systems may suffer from much elevated
amounts of network traffic

— Many research SDSM systems have experimented
with various tricks (and coherence protocol
variations) to help minimize this.

 In general the remote access Is triggered by a
page miss (which is costly to begin with)

Parallel Programming for Multicore Machines Using OpenMP and MPI

Disadvantages (cont)

o |f the code does not walk through memory
sequentially then whole memory pages (4KB or
more) are fetched for a few cachelines' worth of
useful data. Essentially like wasted prefetching.

— Cache-coherence performance problems are much
worse for SDSM systems: False sharing...

— Generic cache-coherence in hardware 1s much slower.

— Need code with each thread working on a distinctly
unique part of the dataset for performance. Even then,
dataset boundaries should be at page boundaries.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Advantages

e OpenMP (or in some cases Pthread) code
transfers over cleanly.

— Minimal coding effort, maximum reuse

 Certainly allows memory scaling of codes
A lot of ground for enhanced performance

« But still for a limited family of codes:

- SPMD-like OpenMP codes would perform the best
- Would also be the easiest for MP1+OpenMP

Parallel Programming for Multicore Machines Using OpenMP and MPI

Current SDSM Options

 |Last few versions of the Intel compilers include
this capability from an evolved version of
Threadmarks from Rice.

— Additional SHAREABLE directive for across-node
memory consistency

— Compile with -cluster-openmp (& -clomp-* options)
e OmnI-SCASH (with Score)

— Part of a complete cluster environment with MPI,
distributed C++ libraries and checkpointing.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Multilevel Parallelism

« MLP: OpenMP inside processes, Unix System V
shared memory between processes

e Developed by NASA (NAS) and SGI for the
Origin series of DSM machines, works on Altix

* program
* processes

* multiple threads inside
of each process
(OpenMP)

» data associated with
each process

* but shared (ccNUMA)
Cheap load balancing :fgg::;gs?zh;;w
— by changing the number of threads per process

— before starting a new parallel region

000 O O o
000 [° %) (60d 2
O O 00 OOO
HILRS

Courtesy of Rolf Rabenseifner, HLRS, University of Stuttgart. Used with permission.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Summary

« Hybrid programming merges the shared and the
distributed memory programming paradigms

« Potentialy superior on dual-cpu SMP clusters
« Care In coding to avoid performance pitfalls
 MPI-2 added support for mixing threads and MPI

o Easiest to use OpenMP when for master-comms

 Alternatives hiding the message exchange from
the user exist but have performance issues

Parallel Programming for Multicore Machines Using OpenMP and MPI

Summary cont.

e Master-only paradigm useful only on certain
platforms including Myrinet clusters

— Internally multi-threaded MPI library useful

e Other platforms need extra optimizations to
saturate inter-node bandwidth

« Master-only with single-threaded MPI suffers
from 1dle processors during communications

o Difficult to load-balance, hide communication
with computation.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Amdahl's Law

Serial time on 1 proc: T, =T +T
Parallel time on P procs: T =T, +T /P +T (P)

Parallel overhead:
T ((P)=T. (P)+T. (P)+T. (P)

pover over comim sync

Parallel time on 1 proc: T (1) = T +T (1)
Best case scenario: T . (P) =0

Speedup, S, =T/ T, serial fraction f_ =T /T,
then S ={f, +[1-f,]/P}'so S < 1/f

Ser ser

Parallel Programming for Multicore Machines Using OpenMP and MPI

There's no free lunch!

Courtesy of Robert G. Brown, Duke University. Used with permission.

[._ ._ ._ T T T T T T T T — [T T T T 5 T T G
£ =1-f_=0.5,0.9,0.99,0.999,0.999 T (NN
100 100 [~ N ” .
= = 7
] | -
| % T -
@ @ -
| & & -
g = g mf .
I T
. . . . s a
a m {5 6] o 50 [E 6]
N {processors) src:rgb @phy.duke.edu N {procesaora) N {procesaora)
'
Amdahl's Law
speedup
N f =50 f =.00 f = .99
par par par 12
10 1.
100 1.
1000 1.
10000 1.

Small problem size:
2D Grid Calculations 85 seconds 85% i
Serial fraction 15 seconds 15%
Larger problem size:

2D Grid Calculations 680 seconds
97.84% _ O 2 3 4 5 8 7 8 8
Serial fraction 15 seconds Fraction of code that can be parallelized
2.16% src:LLNL

Courtesy of Lawrence Livermore National Laboratory. Used with permission.

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:rgb@phy.duke.edu

Parallel Scaling & Efficiency

« Two kinds of Scaling:

— Strong: fixed problem size

e S, =T/ T, calculated sometimes as
~ S(P) = T(1)/T(P)or Sg,(P) = (T(P,)/P)/T,(P)
e Ideally scales linearly, sometimes superlinearly

— Parallel Efficiency: E = S/P (expressed as a %)

— Weak: problem size W that scales with P so as to keep
the effective problem size per processor constant

e Sy,(P)=T(PW,P)/T(W), calculated sometimes as
Sy(P) =T (PW,P)/ T(W,Q),. Should be close to 1. E=1/S

Parallel Programming for Multicore Machines Using OpenMP and MPI

Parallel Efficiency ESIO Example

60 - Cplant

Parallel Efficiency (%)

10 Molecular dynamics problem (LJ liquid)

0 | | | | | | | | |
1 2 4 8 16 32 64 128 256

Processors

Y

sre: Sandia National Lab Figure by MIT OpenCourseWare.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Weak Scaling SWp Example

0.6 13,800 Cells/PE S6, P2, 12 Group

05
A
)
E 04
s Green Pac TR
Q
& 03}
o
[¢B)
£
|_
= 0.2
m - -

Parallel S, Neutronics (provided by LANL) ASCI Purple
01+
S S S S .
I A I M Tl] L1t] L1 111l
109 10! 102 103 10%
Number of PEs

Figure by MIT OpenCourseWare.

src:Sandia National Lab

Parallel Programming for Multicore Machines Using OpenMP and MPI

MPI Performance Modeling

 Ideally one would like a complete performance model.

 Basic performance model for Pt2Pt comms:
o T = latency + message size/bandwidth
 |n fact multiple ranges (buffered, synchronous, other)
 In fact multiple latencies and bandwidth
« More complicated models: logP, logGP,C"3 etc.
e Even more involved models for collective comms

e Non-blocking comms and overlap of communication with
computation further complicates models

« Glven a model, one uses the machine and runtime parameters
to get an estimated wallclock time.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Performance Rules

However, even In the absence of a detailed or even a
rudimentary performance model we can still come up with
Important rules of thumb!

1. Minimize the ratio of communication to computation

2. Between lots of small messages and one large one choose the
latter (less overhead, message aggregation)

3. (At least) for anything more than a few processors collective
communications should be a gain.

4. Avoid synchronizations (explicit & implicit)
5. Balance the work (load balance)

6. Overlap communication with computation
7.Perform redundant work if it's cheaper!

Parallel Programming for Multicore Machines Using OpenMP and MPI

Performance Tuning
« Time your code, as a function of processors, problem

« Important to decide on weak vs. strong scaling

« See at what np bottleneck starts appearing

« Use profiling/tracing tools for that np and over

 Look at the graphical picture and find hotspots

» Look for time spent idling (load imbalance)

 Look for too many small message exchanges

» Look for obvious collective subroutine patterns

e Look for too many messages to/from one process at a time

* Look at time spent in routines and find culprits

« Try applying the rules (routine, code, algorithm changes)

e |terate

Parallel Programming for Multicore Machines Using OpenMP and MPI

Portable Performance
« Unfortunately, In practice a contradiction in terms!

« Architecture/MPI implementation dependent
e Sometimes problem size dependent!

« S0 avey well tuned code may (preferably under the cover)

employ different routines/algorithms for different machines
and even problem sizes. Hide complexity with libraries.

« A well tuned code on the other hand can be expected to be
reasonably performing in a portable manner.

« Employing 3" party libraries makes this more of the library
provider's problem and less of yours.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Programming in Parallel
« Decompose a problem into parts that can be solved

concurrently.

 |f no communication is needed, then problem is EP

(Embarrassingly Paral

el)! :-)

* The decomposition can be in terms of mapping to data

structures, mapping to p

nysical entities (regions of space),

mapping to different tasks.

 Algorithms and decompositions need to be compatible,
requiring as little communication overhead as possible. Use

smart partitioners!

 Best serial algorithm is not best parallel one!

e Think Gauss Seidel vs.

Jacobi

Parallel Programming for Multicore Machines Using OpenMP and MPI

Problem Statement

Flow around a cylinder:
Numerical simulation using FV, FE or FD

Data structure: A(1:M, 1:N)

Solve: (A+B+C)x=b

Figure by MIT OpenCourseWare.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Major Options

Flow around a cylinder:

Numerical simulation using
FV, FE or FD

Work deCOmpOSition (A+B+C)x =D Data structure: A(1:M, 1:N)

Solve: (A+B+C)x=b

calc C
calcb

Data decomposition

A(1:200, 101:150)
A(1:200, 151:200)

Domain decomposition

Figure by MIT OpenCourseWare.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Major modes of parallelism

e Master-worker (or task-farming)
— Embarrassingly parallel
e Domain decomposition

 Array distribution
o Particle/Space distribution

 Pipelined dataflows
o Concurrent workflow execution

o Weakly coupled interdisciplinary models

Parallel Programming for Multicore Machines Using OpenMP and MPI

Master-Worker or (Slave :-)

many workers execute It.

T-T e One master coordinates work,

Worker Worker Worker - Worker is in a loop, waiting for a

- Also known as task new task, executing it and then
farming sending the result to master.

- Automatic load — Master is In a loop, sending tasks
balance to the workers, receiving results

— Loosely coupled and operating on them, adjusting
calculations the queue of tasks continously.

_ Easy |mp|ementat|0n — Master nO'[IfIES termination.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Advanced Task Farming

\
" m
/ """ ~J

........

................

Figure by MIT OpenCourseWare.

« Search algorithms:

- e.g. Interval solvers
- Recursive M-W
— Master Is also Worker

* Master Slave with two
Masters: Input/Output.

— Reduces the load on
the coordinating
(input) Master.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Embarrassingly Parallel (EP)

o A misnomer: “Pleasantly Parallel” Is better name

— That Is you wish you had an EP application! :-)

- Very loosely coupled independent subtasks, requiring
minimal (infrequent) point-to-point communications

— Monte Carlo calculations, parameter searches etc.

— Usually implemented as M-W, with the master also
possibly doubling up as a worker due to low load

— Negligible serial fraction, great scalability
— Great for slow Interconnects, unbalanced systems

Parallel Programming for Multicore Machines Using OpenMP and MPI

Domain Decomposition

DHFFICLILTIES WITH THE SCHUR COMPLEMENT COMT LAIVEREITY OF RMINNESOTA

DOMAIN DECOMPOSITION VIA GRAPH PARTITION e Distribute data

structures to
load balance,
minimize
comm volume
and number of

neighbors.
L s Local problem
ORDERING OF SUBDOMAIN FINITE ELEMENTS +g|obal update

(Courtesy Dr. Valmor de Almeida, Oak Ridge National Laboratory)

Courtesy of Valmor de Almeida, Oak Ridge National Laboratory. Used with permission.

Parallel Programming for Multicore Machines Using OpenMP and MPI

ELDCK

BLOCK, ™

CYCLIC, ™

* BLOCK

= CYCLIC

Array Distribution

CTCLIC

ELOCK, BLOCK

CYCLIC, CYCLIC

Courtesy of Lawrence Livermore National Laboratory. Used with permission.

fu

{2}

{12

{2

{18}

{23

{14

{oa

{15}

{25

1

{a }

L4

{32

{42

{33

{43

{34

{44

{35

{45

{ 51}

{ 52 ;

{ 53}

{54

{ 85 }

5x5 mat

rix partitione

d in 2x2 blocks

Figure by MIT OpenCourseWare

Given say, Ax=Db

The arrays In the code
are distributed among
the processes/threads
as a block (better
locality) or cyclically
(better load-balance)

Or block-cyclic

Owner computes...

Parallel Programming for Multicore Machines Using OpenMP and MPI

Particle/Space decomposition

« N-body problems in statistical mechanics,

astro
- N

physics, molecular dynamics etc.

particle trajectories evolving coupled with each

other with long and/or short range interactions.

Direct algorithm is O(N?), for load balance distribute
particles to processors as evenly as possible.

Algorithms employing particle aggregation (hierarchical
tree structures) are O(N log(N)) or O(N)

Decomposition is then based on space partitions; some
may be empty at any given time.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Pipelined Dataflows

src:LLLNL

 Like a processor pipeline, only at the
level of individual CPUs or machines

----------------------- * There Is a corresponding pipeline
"""""""""""" start-up and wind-down cost. The
longer the pipeline, the higher the
o cost, the more the parallelism.

e R — For N>2(P-1) slices & P pipeline stages
l . e floor((N-2(P-1))/P)+2(P-1) total stages
e — Each stage can be parallel in itself

<«——Time

Figure by MIT OpenCourseWare.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Concurrent Workflow Execution

200000
SDSS

6; §_§150

getTargetRegion getBufferRegion

brg Search

brg(1).par ——> bcg Search

cores(1).par
getCoresBuffer

N

coresBuffer(1).fit

b

parameters.par bcgCoalesce

¥

clusters(1).fit

getClusters

clusters(2).fit getGalaxies

galcatalog(2).fit

getCatalog

{ {

catalog.fit galcatalog.fit

¥
target(1).fit 41;

— 1 buffer(1)fit

¥

src: Sloan Digital Sky Survey (SDSS)

 Traditional distributed computing
with tighter coupling and loops

o |deal type of Grid Computing
applications. Example from:

— the Sloan Galaxy Cluster Finder

 Parallelism depends on the “width”
of the workflow, coupled with any
pipelined dataflow parallelism.

« Multiple data dependencies

Figure by MIT OpenCourseWare.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Interdisciplinary Models

Atmospheric model

Plants Herbivores Carnivores Scavengers

Time

Ocean model

Land/Surface model

Figure by MIT OpenCourseWare.
src: LLNL

« Multiple physical/biological/chemical processes
working in different domains, * weakly interacting with

evolving in distinct timescales, each other (through
+ Each process can be internally ~ 11€1ds, qu;(es etc.)
parallelized. every n (=1) common
timesteps.

« Component approach

.. e 1 or 2-way Interactions
 Load balancing issues

Parallel Programming for Multicore Machines Using OpenMP and MPI

Parallelizing an Existing Application
« Study and understand the inherent parallelism In your algorithm —

you need to employ it to the maximum.
 Profile your code to find expensive parts
o Try to parallelize at as coarse a level as possible

« Among natural (for your algorithm) decompositions choose the
decomposition that is the best compromise:

e For little communication overhead
e For load balance

e For requiring as little change to the code as possible

« Code up, test and either tune or try another parallelization
approach if too slow.

 Use 3" party libraries!

Parallel Programming for Multicore Machines Using OpenMP and MPI

Parallel Libraries
« Vendor, ISV or research/community codes

« Many times free!
e They contain a lot of domain expertise
e There is usually good documentation & support
« They offer a higher level programming abstraction

« Cleaner, easier to understand, debug & maintain code
* The performance issues are moved to the library

e Changes in algorithms often possible internally, without
changing the API.

e Bottom line: USE THEM if you can!

Parallel Programming for Multicore Machines Using OpenMP and MPI

Linear Algebra

e Dense Linear Algebra:

« ScaLAPACK/PBLAS & BLACS (on MPI)
« PLAPACK/sB BLAS

o Sparse Linear Algebra:

 Direct algorithms:

« CAPS, MFACT

« WSMP, SuperLU_DIST, PSPACES, MP_SOLVE, MUMPS
e lterative algorithms

« PARPRE

* PIM, PSPARSLIB, Aztec, Blocksolve,
* Eigensolvers

« PARPACK, SYISDA

Parallel Programming for Multicore Machines Using OpenMP and MPI

| Other Libraries
o Multi Solvers

e PETSC
 Mesh & Graph partitioners:
« CHACO, Jostle, (Par)Metis, PARTY, Scotch
e FFTs, random number generators
« FFTW, UHFFT, SPRNG
e Dynamic Load Balancers
o Zoltan, DRAMA
« Coupling libraries
e MpCCI, MCT

Parallel Programming for Multicore Machines Using OpenMP and MPI

Your own library!

* You can try and hide the functionality of your parallel
solver behind a library interface

* You may have to use your own communicator

 You should assume that MPI gets initialized outside
the library

 You should provide a clean APl and a data structure
definition to interface with

e You cannot make too many assumptions about the
code that will call your library. If you do, document
them well so that you and other remember them!

Parallel Programming for Multicore Machines Using OpenMP and MPI

MIT OpenCourseWare
http://ocw.mit.edu

12.950 Parallel Programming for Multicore Machines Using OpenMP and MPI
IAP 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Performance Models
	Performance Rules
	Performance Tuning
	PortablePerf
	Programming in Parallel
	Problem
	Options
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Existing
	3rd party libraries
	LinAlg
	Graph & Mesh
	Ownlib

