
Today's agenda 
● Homework discussion 

● Collective Communications: All-with-All 

● Derived Datatypes 

● Groups, Contexts and Communicators 

● Topologies 

● Language Binding issues 

● The Runtime and Environment Management 

● The MPI profiling interface and tracing 
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Reduce-Scatter 
●MPI_Reduce_scatter(void *sendbuf, void *recvbuff, int *revcnt, 
MPI_Datatype type, MPI_Op op, MPI_Comm comm) 

●MPI_REDUCE_SCATTER(sendbuf, recvbuf, recvcnt, type, op, 
comm, ier) 

●Can be considered as a 

MPI_Reduce(sendbuf, tmpbuf, cnt, type, op, root, comm);


MPI_Scatterv(tmpbuf, recvcnt, displs, type, recvbuff, 

recvcnt[myid], type, root, comm);


where cnt is the total sum of the recvcnt values and displs[k] is 
the sum of the recvcnt for up to processor k-1. 

●Implementations may use a more optimal approach 
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How it would work for matvec
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x yz Alternative decomposition 
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Why Derived Datatypes?

●	 So far all MPI operations seen operate on 1D arrays of predefined 

datatypes. 

●	 Multidimensional arrays (linearly stored in memory) can be sent as 
the equivalent 1D array 

●	 Contiguous sections of arrays need to be copied (implicitly in 
Fortran 90/95) to one big chunk to sent over 

●	 Edges, vertices etc. of 2D/3D arrays need to be sent separately or 
packed to a sent buffer on the sent side and unpacked from the 
receive buffer on the receive side, at the programmer's effort 

●	 Strided data needs to be packed/sent/received/unpacked as above. 

●	 Message aggregation: int & double in same message 
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... ...

What is a Derived Datatype? 
●	 A general datatype is an opaque object specifying: 

●	 A sequence of basic datatypes 

●	 A sequence of integer (byte) displacements 

●	 Type signature: 

●	 {type1, type2, ..., typeN} 

●	 Type map: 

●	 {(type1,disp1), (type2,disp2) 

●	 The displacements are not required to be positive, distinct, or 
in increasing order. Therefore, the order of items need not 
coincide with their order in store, and an item may appear 
more than once. 
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A derived datatype


Parallel Programming for Multicore Machines Using OpenMP and MPI


0 4 8 12 16 20 24

Example:

derived datatype handle

basic datatype

MPI_CHAR

MPI_INT

MPI_INT

MPI_DOUBLE

displacement

0

4

MPI_CHAR 1

8

16

c d 10 30 3.11d-33

A derived datatype describes the memory
layout of, e.g., structures, common blocks,
subarrays, some variables in the memory 

Figure by MIT OpenCourseWare.



More details

●	 Basic (predefined) MPI datatypes are in fact defined in the same 

way, based on base language datatypes 

●	 (User) derived datatypes can be defined in terms of basic as well as 
other defined datatypes. 

●	 This level of recursive definition can be repeated to construct very 
complicated datatypes 

●	 Just like basic datatypes, defined datatypes can be used as 
arguments to communication routines. 

●	 An efficient implementation of communication events when 
working with such complicated datatypes is left to the 
implementation 

●	 May use optimizations known to work on architecture 
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Size and Extent

●	 Size: length of "useful" part == data to be transferred 

●	 Extent: the span from the first byte to the last byte 
occupied by entries in this datatype, rounded up to 
satisfy alignment requirements. 

●	 Alignment is architecture/language/compiler specific 
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Datatype construction: Contiguous

●	 MPI_Type_contiguous(int count, MPI_Datatype 

oldtype, MPI_Datatype *newtype) 

●	 The simplest possible derived datatype 

●	 Concatenation of count copies of oldtype variables 

●	 Call with 2, MPI_DOUBLE_PRECISION to get your 
own MPI_DOUBLE_COMPLEX in Fortran if absent. 
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Datatype construction: Vector

●	 MPI_Type_vector(int count, int blocklength, int stride, 

MPI_Datatype oldtype, MPI_Datatype *newtype) 

●	 Concatenation of count copies of blocks of oldtype variables 
of size blocklength positioned stride blocks apart. Strides 
(displacements) can be negative. 
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More about vector types

●	 Type before described as 

●	 MPI_Type_vector(2, 3, 5, oldtype, newtype) 

●	 MPI_Type_contiguous(n, oldtype, newtype) same as: 

●	 MPI_Type_vector(n, 1, 1, oldtype, newtype) 

●	 MPI_Type_vector(1, n, k, oldtype, newtype) for any k 

●	 MPI_Type_hvector() requires stride to be in bytes, instead of 
oldtype units. Type is MPI_Aint. 

●	 MPI_Type_indexed(int count, int *array_of_blocklen, int 
*array_of_displacements, MPI_Datatype oldtype, 
MPI_Datatype *newtype); MPI_Type_hindexed() 

●	 For vectors with variably sized blocks, variable strides 
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Datatype construction: Structure
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Struct buff_layout

MPI_Type_struct(2, array_of_blocklengths,
      array_of _displacements, array_of_types,
                                             &buff_datatype);     

MPI_Type_commit(&buff_datatype);     

&buffer = the start
      address of the data

the datatype handle
describes the data layout

Compiler

{ int        i_val[3];
  double d_val[5];

} buffer;

double

MPI_Send(&buffer, 1, buff_datatype, ...)

array_of_types[0]=MPI_INT;
array_of_blocklengths[0]=3;
array_of_displacements[0]=0;
array_of_types[1]=MPI_DOUBLE;
array_of_blocklengths[1]=5;
array_of_displacements[1]=...;

int
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Alignment, gaps and addresses 
●	 MPI_Type_struct(int count, int *array_of_blocklengths, 

MPI_Aint *array_of_displacements, MPI_Datatype 
*array_of_oldtypes, MPI_Datatype *newtype); 

●	 Alignment restrictions may require the presence of gaps in 
your structure. 

●	 count=2, array_of_blocklenghts=[3,5], 
array_of_types=[MPI_INT,MPI_DOUBLE] 

●	 What about array_of_displacements ? [0,addr1-addr0] 
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Address, size and extent 
●	 MPI_Address(void* location, MPI_Aint *address) 

●	 MPI_BOTTOM for the start of the address space 

●	 Use MPI_Address to get absolute addresses for your 
constituent parts and calculate the correct displacement, with 
the gaps the the compiler requires 

●	 MPI_Type_lb/ub() & MPI_LB/UB for endbounds 

●	 MPI_Type_extent(MPI_Datatype datatype, MPI_Aint 
*extent) 

● Will calculate the proper extent in bytes of the datatype 

●	 MPI_Type_size(MPI_Datatype datatype, int *size) 

●	 Will calculate the proper size in bytes ("useful" part that gets 
communicated) of the datatype. 
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Correct usage of addresses (std)

●	 Successively declared variables in C or Fortran are not 

necessarily stored at contiguous locations. Thus, care must be 
exercised that displacements do not cross from one variable to 
another. Also, in machines with a segmented address space, 
pointers arithmetic has some peculiar properties. Thus, the use 
of pointer addresses should instead be replaced by the use of 
absolute addresses, ie. displacements relative to the start 
address MPI_BOTTOM. 

●	 Variables belong to the same sequential storage if they belong 
to the same array, to the same COMMON block in Fortran, or 
to the same structure in C. Beware of unions! Look up the 
rules in the standard! 
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Creating & destroying datatypes

●	 MPI_Type_commit(MPI_Datatype *datatype) 

●	 You can now go ahead and use the datatype in any

communication operation that makes sense.


●	 A datatype may specify overlapping entries. The use of such a 
datatype in a receive operation is erroneous. (This is erroneous 
even if the actual message received is short enough not to write 
any entry more than once.) 

●	 MPI_Type_free(MPI_Datatype *datatype) 

●	 Freeing a datatype does not affect any other datatype that was 
built from the freed datatype. The system behaves as if input 
datatype arguments to derived datatype constructors are passed 
by value. Any communication operations using this datatype 
that are still pending will complete fine. 
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Creating equivalent types

●	 Create types: 

●	 CALL MPI_TYPE_CONTIGUOUS( 2, MPI_REAL, type2, ...) 

●	 CALL MPI_TYPE_CONTIGUOUS( 4, MPI_REAL, type4, ...) 

●	 CALL MPI_TYPE_CONTIGUOUS( 2, type2, type22, ...) 

●	 With proper care, any of the above can be used to 
accomplish the same end. Which is to be used is a 
matter of programming clarity and performance. 
While in principle complex types composed of 
complex types should not be slower, implementations 
may not really manage the indirection well. 
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Matching sends & receives

● Sends: 

● CALL MPI_SEND( a, 4, MPI_REAL, ...) 

● CALL MPI_SEND( a, 2, type2, ...) 

● CALL MPI_SEND( a, 1, type22, ...) 

● CALL MPI_SEND( a, 1, type4, ...) 

● Receives: 

● CALL MPI_RECV( a, 4, MPI_REAL, ...) 

● CALL MPI_RECV( a, 2, type2, ...) 

● CALL MPI_RECV( a, 1, type22, ...) 

● CALL MPI_RECV( a, 1, type4, ...) 

● Each of the sends matches any of the receives. 
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Counting

●	 MPI_Get_elements(MPI_Status *status, MPI_Datatype datatype, 

int *count) 

●	 MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int 
*count) 

● Define a derived datatype 

CALL MPI_TYPE_CONTIGUOUS(2, MPI_REAL, Type2, ierr) 

CALL MPI_TYPE_COMMIT(Type2, ierr) 

● One processors sends consecutively: 

CALL MPI_SEND(a, 2, MPI_REAL, 1, 0, comm, ierr) 

CALL MPI_SEND(a, 3, MPI_REAL, 1, 0, comm, ierr) 
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Counting example


● The other process receives 

CALL MPI_RECV(a, 2, Type2, 0, 0, comm, stat, ierr) 

CALL MPI_GET_COUNT(stat, Type2, i, ierr)  !i=1 

CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) !i=2 

CALL MPI_RECV(a, 2, Type2, 0, 0, comm, stat, ierr) 

CALL MPI_GET_COUNT(stat, Type2, i, ierr) 

! returns i=MPI_UNDEFINED 

CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) !i=3 
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Datatyping array sections

REAL a(100,100,100), e(9,9,9) ! e=a(1:17:2, 3:11, 2:10) 

CALL MPI_TYPE_VECTOR( 9, 1, 2, MPI_REAL, oneslice, 
ierr) 

CALL MPI_TYPE_HVECTOR(9, 1, 100*sizeofreal, oneslice, 
twoslice, ierr) 

CALL MPI_TYPE_HVECTOR( 9, 1, 100*100*sizeofreal, 
twoslice, 1, threeslice, ierr) 

CALL MPI_TYPE_COMMIT( threeslice, ierr) 

CALL MPI_SENDRECV(a(1,3,2), 1, threeslice, myrank, 0, e, 
9*9*9, MPI_REAL, myrank, 0, MPI_COMM_WORLD, 
status, ierr) 
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Groups, Contexts, Communicators

●	 Group: An ordered set of processes, each associated with a 

rank (within a continuous range). Part of a communicator. 

●	 Predefined: MPI_GROUP_EMPTY,MPI_GROUP_NULL 

●	 Context: A property of a communicator that partitions the 
communication space. Not externally visible. 

●	 Contexts allow Pt2Pt and collective calls not to interfere 
with each other; same with calls belonging to different 
communicators. 

●	 Communicator: Group+Context+cached info 

● Predefined: MPI_COMM_WORLD,MPI_COMM_SELF 

●	 Intra- and Inter-communicators 
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Group Constructors

●	 MPI_Comm_group(MPI_Comm comm, MPI_Group *group) 

●	 MPI_Group_union(MPI_Group group1, MPI_Group group2, MPI_Group *newgroup) 

●	 MPI_Group_intersection(MPI_Group group1, MPI_Group group2, MPI_Group 
*newgroup) 

●	 MPI_Group_difference(MPI_Group group1, MPI_Group group2, MPI_Group 
*newgroup) 

●	 MPI_Group_incl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup) 

●	 MPI_Group_excl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup) 

●	 MPI_Group_range_incl(MPI_Group group, int n, int ranges[][3], MPI_Group 
*newgroup) 

●	 MPI_Group_range_excl(MPI_Group group, int n, int ranges[][3], MPI_Group 
*newgroup) 
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More group functions

●	 MPI_Group_free(MPI_Group *group) 

●	 MPI_Group_size(MPI_Group group, int *size) 

●	 MPI_Group_rank(MPI_Group group, int *rank) 

●	 MPI_Group_translate_ranks (MPI_Group group1, int n, int 
*ranks1, MPI_Group group2, int *ranks2) 

●	 MPI_Group_compare(MPI_Group group1,MPI_Group group2, int 
*result) 

●	 MPI_IDENT results if the group members and group order is 
exactly the same in both groups. This happens for instance if 
group1 and group2 are the same handle. MPI_SIMILAR results if 
the group members are the same but the order is different. 
MPI_UNEQUAL results otherwise. 
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Communicator Functions

●	 MPI_Comm_dup(MPI_Comm comm, MPI_Comm 

*newcomm) 

●	 MPI_Comm_create(MPI_Comm comm, MPI_Group group, 
MPI_Comm *newcomm) 

●	 MPI_Comm_split(MPI_Comm comm, int color, int key, 
MPI_Comm *newcomm) 

●	 MPI_Comm_compare(MPI_Comm comm1,MPI_Comm 
comm2, int *result) 

●	 MPI_Comm_free(MPI_Comm *comm) 

●	 And the MPI_Comm_size,MPI_Comm_rank we have already 
met. 
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Inter-Communicators

●	 So far all communications have been between 

processes belonging to the same communicator. 

●	 MPI allows for communications between different 
communicators. 
●	 They can only be Pt2Pt and not collective 

●	 They require the generation of inter-communicator objects. 

●	 For more look at the material on the Web and the standard. 
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Virtual Topologies

●	 Employing the information cached in communicators 

we can map an (intra-)communicator's processes to an 
underlying topology (cartesian or graph) that better 
reflects the communication requirements of our 
algorithm. 

●	 This has possible performance advantages: The 
process to hardware mapping could be thus more 
optimal. In practice this is rare. 

●	 The notational power of this approach however allows
 code to be far more readable and maintainable. 
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A cartesian topology
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Cartesian topology calls

●	 MPI_Cart_create(MPI_Comm comm_old, int ndims, int 

*dims, int *periods, int reorder, MPI_Comm *comm_cart) 

● Extra processes get MPI_COMM_NULL for comm_cart 

●	 MPI_Dims_create(int nnodes, int ndims, int *dims) 

●	 If ndims(k) is set, this is a constraint 

●	 For graphs, MPI_Graph_create(), same rules 

●	 MPI_Topo_test(MPI_Comm comm, int *status) 

● Returns MPI_CART, MPI_GRAPH, MPI_UNDEFINED 

●	 MPI_Cartdim_get, MPI_Cart_get etc. for cartesian topologies 

●	 MPI_Graphdim_get, MPI_Graph_get etc. for graphs 
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Ranks in cartesian communicators
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Cartesian rank/coordinate functions

●	 MPI_Cart_rank(MPI_Comm comm, int *coords, int *rank); 

out of range values get shifted (periodic topos) 

●	 MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, 
int *coords) 
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Cartesian shift

●	 MPI_Cart_shift(MPI_Comm comm, int direction, int disp, int 

*rank_source, int *rank_dest) 

● MPI_PROC_NULL for shifts at non-periodic boundaries 
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Cartesian subspaces
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More functions

●	 MPI_Graph_neighbors_count(MPI_Comm comm, int 

rank, int *nneighbors) 

●	 MPI_Graph_neighbors(MPI_Comm comm, int rank, 
int maxneighbors, int *neighbors) 

●	 Used in that order to get the neighbors of a process in 
a graph. 
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Fortran binding issues

call MPI_GET_ADDRESS(buf,bufaddr, ierror) ditto... 

call MPI_TYPE_CREATE_STRUCT(1,1, bufaddr,MPI_REAL,type,ierror)   ditto... 

call MPI_TYPE_COMMIT(type,ierror)  ditto... 

val_old = buf register = buf 

val_old = register 

call MPI_RECV(MPI_BOTTOM,1,type,...)  ditto... 

val_new = buf val_new = register 

call MPI_IRECV(buf,..req) call MPI_IRECV(buf,..req)  call 
MPI_IRECV(buf,..req) 

register = buf  b1 = buf 

call MPI_WAIT(req,..)  call MPI_WAIT(req,..)   call MPI_WAIT(req,..) 

b1 = buf b1 = register 
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Further Fortran issues 
Basic vs. Extended Fortran Support 
Strong typing in F90 a problem with choice args 
A scalar should not be passed instead of a vector. 
Extra work to code with KIND numerical types 
MPI_IRECV(buf(a:b:c), ...) 
Fortran derived datatypes require MPI equivalents 
Problems with input arguments that are copied... 

e.g. MPI_Recv with a buffer that was passed to the parent subroutine 
as a section or an assumed shape array argument that is associated 
with such a section. 
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The MPI runtime

●	 Provides for process placement, execution & handling 

●	 Handles signals (SIGKILL, SIGSUSP, SIGUSR1/2) 

●	 Usually collects stdout and stderr, may propagate stdin 

●	 May propagate environment variables 

●	 May provide support for debugging, profiling, tracing 

●	 May interface with a queuing system for better process 
placement 

●	 MPI-2 specifies (but doesn't require) standardized mpirun 
clone: mpiexec. Others: poe, mpprun, prun... 

●	 Command line arguments and/or environment variables allow 
for different behavior/performance 
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MPI environment


●	 Initialize, Finalize and Abort functionality 

●	 Error (exception) handling 

●	 Other inquiry functions: 
● double MPI_Wtime(void), double MPI_Wtick(void) 

●	 MPI_WTIME_IS_GLOBAL 

● MPI_Get_processor_name(char *name, int *resultlen) 

●	 MPI communicator inquiry (size, rank) for 
MPI_COMM_WORLD 
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Exceptions

●	 Use exceptions and MPI return codes! 

●	 Default error handler: MPI_ERRORS_ARE_FATAL 

●	 The handler, when called, causes the program to abort on all 
executing processes. This has the same effect as if 
MPI_ABORT was called by the process that invoked the 
handler. 

●	 Alternative: MPI_ERRORS_RETURN 

●	 The handler has no effect other than returning the error code to 
the user. Put checks for the error codes in your source! 

●	 MPICH provides two more: 

● MPE_Errors_call_dbx_in_xterm, MPE_Signals_call_debugger 
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Error Handling

●	 Environment Error handling routines: 

●	 MPI_Errhandler_create(MPI_Handler_function *function, 
MPI_Errhandler *errhandler) 

●	 MPI_Errhandler_set(MPI_Comm comm, MPI_Errhandler 
errhandler) 

●	 MPI_Errhandler_get(MPI_Comm comm, MPI_Errhandler 
*errhandler) 

●	 MPI_Errhandler_free(MPI_Errhandler *errhandler) 

●	 MPI_Error_string(int errorcode, char *string, int

*resultlen)


●	 MPI_Error_class(int errorcode, int *errorclass) 
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The MPI Profiling Interface

●	 The MPI standard takes great pains to offer a specification for 

a useful profiling interface that does has minimum overhead 
and high flexibility. 

●	 All MPI calls have a shifted name of PMPI_... instead of 
MPI_... 

●	 A profiling library can write it's own MPI_... call, calling the 
corresponding PMPI_... call to actually do the message 
passing. 

●	 This provides a way to trace as well as profile in terms of cost 
in time a parallel program's execution for performance or 
debugging reasons. 
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MPI Profiling & Performance Tools

● An extremely wide choice of tools: 

● Research codes: 

● AIMS  (NASA Ames) 
● (sv)Pablo (UIUC) 
● Paradyn/Dyninst (University of Wisconsin) 
● TAU (University of Oregon) 
● XMPI (Indiana University) 
● MPE/Jumpshot (ANL) 
● Paragraph/MPICL 
● FPMPI 
● Also lightweight statistics tools: mpiP, ipm 

● Commercial tools (VT, speedshop, Intel Trace A/C, VAMPIR) 
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XMPI

●	 Works with LAM/MPI, could work with other 

implementations. 

●	 A GUI for launching MPI parallel programs, monitoring them 
in real time and also do post-mortem analysis on them. 

●	 Uses the slower "daemon" mode of LAM, provides individual 
message detail and has multiple views. The daemon mode 
allows cmdline tracing tools mpimsg and mpitask to be more 
informative 

●	 Very easy to use but non-daemon mode is required for 
performance tuning. Launch with -ton and collect tracefile 
with lamtrace 
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XMPI in action
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Green: Represents the length of time a process runs outside of MPI. 

Red: Represents the length of time a process is blocked, waiting for 
communication to finish before the process resumes execution. 

Yellow: Represents a process's overhead time inside MPI (for example, time 
spent doing message packing). 



MPE (from MPICH/MPICH2)

● Set of utility routines, including graphics 

● Graphical viewing of traces with (n)upshot, jumpshot 

● Compile with -mpe=mpitrace to enable basic tracing 
● A message printed to stdout at every entry and exit 

● Compile with -mpe=mpilog to enable logging 
● ALOG, CLOG, CLOG2, UTE, SLOG and SLOG2 format 

● Converters between formats (eg. Clog2slog2) 

● SLOG2 is the newest and most scalable 

● Jumpshot-4 is needed for looking at SLOG2 files 
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Jumpshot
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More Jumpshot


Paralle




Even more Jumpshot
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