
Today's agenda


● Homework discussion 
● Bandwidth and latency in theory and in practice 

● Paired and Nonblocking Pt2Pt Communications 

● Other Point to Point routines 

● Collective Communications: One-with-All 

● Collective Communications: All-with-All 
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A bit of theory

●	 Let “zero-message” latency be l and asymptotic 

bandwidth be BW: 

●	 Then most simplistic (w/o contention) linear model for the 
time to communicate message of size L is T  = l + L/BW 

c

●	 In fact the model should be piecewise linear to distinguish 
between (small,) eager and rendezvous protocols. 

●	 Moreover, the BW that should be used is independent of L. 
●	 Cost of memory copies can be a factor in BW. 

●	 For small enough L, cache effects increase BW 
●	 For very large L, TLB misses decrease BW 
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Latency Examples
● y-axis intercept is zero message latency

● Note the difference between Gigabit Ethernet, IPoIB, 
DDR Infiniband and Shared Memory (same and 
different socket) performance
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Bandwidth Examples

● Plot of the “effective bandwidth” Bw =L/T =2L/RTT
ef c

● Note cache effects, noise.



Deadlock around the ring


●	 Consider a ring communication scenario where everyone talks 
to one's neighbour to the right around a circle. If synchronous 
blocking communicatios are used (MPI_Ssend or MPI_Send 
for large messages) the messages never get delivered as 
everybody needs to send before receiving! 
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Bidirectional Exchange

●	 Consider the cases where two processes are exchanging 

messages concurrently or a process is sending a message 
while receiving another. 

●	 There are two routines that provide an optimized deadlock 
free macro for this operation: 

●	 MPI_Sendrecv(int *sendbuf, int sendcnt, MPI_Datatype 
sendtype, int dest, int sendtag, void *recvbuf, int recvcnt, 
MPI_Datatype recvtype, int src, int recvtag, MPI_Comm 
comm, MPI_Status *stat) 

●	 MPI_Sendrecv_replace does not use the recvbuf, recvcnt and 
recvtype arguments as the source array gets overwritten (like 
a swap) 

Parallel Programming for Multicore Machines Using OpenMP and MPI




Nonblocking communications

●	 The situation can be rectified by using nonblocking 

communication routines that return immediately, without 
making sure that the data has been safely taken care of. 

●	 That way after the send the receive can be posted and the 
deadlock is avoided 

●	 But beware: Until such a time that the communication is 
successfully completed, no pointer input arguments to the 
routines may be modified as they wrong data/parameters 
will be used when the communication does take place. 

●	 This is unlike the situation with the blocking comms where
 upon return from the call, one is free to reuse the args. 

●	 MPI_Ixxxx instead of MPI_xxxx for the names 
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MPI nonblocking standard send

●	 MPI_Isend(void *buf, int cnt, MPI_Datatype type, int dest, int 

tag, MPI_Comm comm, MPI_Request *req) 

●	 MPI_ISEND(buf, cnt, type, dest, tag, comm, req, ierr) 

●	 MPI_Wait(MPI_Request *req, MPI_Status *stat) 

●	 MPI_WAIT(req, stat, ier) 

●	 Call MPI_Isend, store the request handle, do some work to 
keep busy and then call MPI_Wait with the handle to 
complete the send. 

●	 MPI_Isend produces the request handle, MPI_Wait consumes 
it. 

●	 The status handle is not actually used 
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MPI nonblocking receive

●	 MPI_Irecv(void *buf, int cnt, MPI_Datatype type, int src, int 

tag, MPI_Comm comm, MPI_Request *req) 

●	 MPI_IRECV(buf, cnt, type, src, tag, comm, req, ier) 

●	 MPI_Wait(MPI_Request *req, MPI_Status *stat) 

●	 MPI_WAIT(req, stat, ier) 

●	 Call MPI_Irecv, store the request handle, do some work to 
keep busy and then call MPI_Wait with the handle to 
complete the receive. 

●	 MPI_Irecv produces the request handle, MPI_Wait consumes 
it. 

●	 In this case the status handle is actually used. 
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Deadlock avoidance

●	 If the nonblocking sends or receives are called back-

to-back with MPI_Wait we basically retrieve the 
blocking behavior as MPI_Wait is a blocking call. 
●	 To avoid deadlock we need to interlace nonblocking sends with 

blocking receives, or nonblocking receives with blocking 
sends; the nonblocking calls always precede the blocking ones. 
Using both nonblocking calls may land us in trouble again 
unless we  reverse the order of Wait calls, or interlace the order 
of send and receive calls (even #P). 
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Other nonblocking sends

●	 For each blocking send, a nonblocking equivalent: 

●	 MPI_Issend: nonblocking synchronous send 

●	 MPI_Ibsend: nonblocking asynchronous send 

●	 MPI_Irsend: nonblocking ready send 

●	 Take care not to confuse nonblocking send with asynchronous 
send although the terminology has been used interchangeably 
in the past! 

●	 A successful blocking asynchronous send returns very quickly 
and the send buffer can be reused. 

●	 Any nonblocking call returns immediately and the buffer 
cannot be tampered with until the corresponding blocking 
MPI_Wait call has returned! 
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Nonblocking Synchronous Send

●	 For example, an MPI_Issend() works like using an 

unattended fax machine. You set up the fax to be sent, 
go away but need to come and check if all's been sent. 
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Non blocking synchronous send

Figure by MIT OpenCourseWare.



Implementing nonblocking comms

●	 The actual communication in the case of the nonblocking calls 

can take place at any given time between the call to the 
MPI_Isend/Irecv operation and the corresponding MPI_Wait. 
Fortran 90 issues! 

●	 The moment it actually happens is implementation dependent 
and in many cases it is coded to take place mostly within 
MPI_Wait. 

●	 On systems with "intelligent" network interfaces it is possible 
for communications to be truly taking place concurrently with 
the computational work the sending process is performing, 
thus allowing for computation to "hide" communication; 
otherwise nonblocking calls just help avoid deadlock without 
helping performance. 
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Testing instead of Waiting

●	 MPI_Test(MPI_Request *req, int *flag, MPI_Status *stat) 

●	 MPI_TEST(req,flag,stat,ier), logical flag 

●	 Instead of calling the blocking MPI_Wait call MPI_Test; if 
flag is true, the message has been received with more 
information in stat and ier. Otherwise the routine returns and 
can be called after a while to test for message reception again. 

●	 On systems where one can have real overlap of 
communication with computation MPI_Test allows finer 
control over communication completion times. 
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All, some and any

●	 Suppose one has a large number of outstanding nonblocking 

calls to wait or test for. MPI provides us with special 
shorthand routines for this case: 

●	 MPI_Waitall/MPI_Testall deal with arrays of requests and 
statuses as their arguments. They test for all pending 
communication requests. 

●	 Ditto for MPI_Waitsome/MPI_Testsome but they also mark the 
locations of successful operations in another index array. They 
return after some time at least one completion on pending 
requests (usually more). 

●	 Finally MPI_Waitany/MPI_Testany will test for all the pending 
requests and return if they come across one that is completed or 
if none are completed. 
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Other comms routines & handles

●	 MPI_Probe/MPI_IProbe will check for a message awaiting to 

be received but will not actually receive it - one needs to call 
MPI_Recv/MPI_Irecv for that. 

●	 MPI_Cancel(MPI_Request *req)  will mark a pending send or 
receive for cancellation. One still needs to call MPI_Wait or 
MPI_Test or MPI_Request_free to free the request handle. 
The message may still be delivered at that time! MPICH 
based implementations beware! 

●	 MPI_Test_cancelled 

●	 MPI_Send_init, MPI_Recv_init and MPI_Start, MPI_Startall: 
Persistent comms 

●	 MPI_PROC_NULL, MPI_REQUEST_NULL 
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Probing

IF (rank.EQ.0) THEN


CALL MPI_SEND(i, 1, MPI_INTEGER, 2, 0, comm, ierr)


ELSE IF(rank.EQ.1) THEN


CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)


ELSE  ! rank.EQ.2


DO i=1, 2 

CALL MPI_PROBE(MPI_ANY_SOURCE, 0,  comm, status, ierr) 

IF (status(MPI_SOURCE) = 0) THEN 

100 CALL MPI_RECV(i, 1, MPI_INTEGER, 0, 0, status, ierr) 

ELSE 

200 CALL MPI_RECV(x, 1, MPI_REAL, 1, 0, status, ierr) 

END IF 

END DO 

END IF 
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Persistent Communications

●	 In the case of very regular communications (say inside a 

loop), some communication overhead can be avoided by 
setting up a persistent communication request ("half" channel 
or port). There is no binding of receiver to sender! 

●	 MPI_Send_init(buf, count, datatype, dest, tag, comm, request) 
sets up persistent sends. The request is inactive and 
corresponds to an Isend(). Corresponding initialization calls 
for Bsend, Ssend and Rsend exist. 

●	 MPI_Recv_init(buf, count, datatype, source, tag, comm, 
request) sets up persistent receives. The request is inactive and 
corresponds to an Irecv(). 
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Persistent Communications (cont)

●	 To activate a persistent send or receive pass the request handle 

to MPI_Start(request). 

●	 For multiple persistent communications employ 
MPI_Startall(count, array_of_requests). This processes 
request handles in some arbitrary order. 

●	 To complete the communication, MPI_Wait()/Test() and 
friends are needed. Once they return, the request handle is 
once again inactive but allocated. To deallocate it 
MPI_Request_free() is needed. Make sure it operates on an 
inactive request handle. 

●	 Persistent sends can be matched with blocking or non-
blocking receives and vice-versa for the receives. 
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Wildcards & Constants


●	 MPI_PROC_NULL: operations specifying this do not 
actually execute. Useful for not treating boundary 
cases separately to keep code cleaner. 

●	 MPI_REQUEST_NULL: The value of a null handle, 
after it is released by the MPI_Wait()/Test() family of 
calls or by MPI_Request_free() 

●	 MPI_ANY_SOURCE: Wild card for source 

●	 MPI_ANY_TAG: Wildcard for tag 

●	 MPI_UNDEFINED: Any undefined return value 
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Collective Comms

●	 Collective communications involve a group of processes, 

namely all processes in a communicator 

●	 All processes call the routine which is blocking and has no 
tag; assumed to be implementor optimized! 

●	 Any receive buffers all have to be the same size and be 
distinct from send buffers (Fortran semantics) 

●	 Operations can be one-to-all, all-to-one and all-to-all in nature 
and combinations thereof. 

●	 They can involve data exchange and combination as well as 
reduction operations 

●	 Many routines have a "vector" variant MPI_xxxxv 
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Synchronization


● MPI_Barrier(MPI_Comm comm) 

● MPI_BARRIER(comm, ier) 

● Forces synchronization for: 
● timing purposes 

● non-parallel I/O purposes 

● debugging 

● Costly for large numbers of 
processes, try to avoid. 
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Broadcast


●	 MPI_Bcast(void *buf, int cnt, MPI_Datatype type, int 
root, MPI_Comm comm) 

●	 MPI_BCAST(buf, cnt, type, root, comm, ier) 

●	 root has to be the same on all procs, can be nonzero 
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Gather

●	 MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype 

sendtype, void *recvbuf, int recvcnt, MPI_Datatype recvtype, 
int root, MPI_Comm comm) 

●	 Make sure recvbuf is large enough on root where it matters, 
elsewhere it is ignored 

●	 MPI_Gatherv has additional arguments for variable recvcnt, 
and output stride 
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Scatter

●	 MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype 

sendtype, void *recvbuf, int recvcnt, MPI_Datatype recvtype, 
int root, MPI_Comm comm) 

●	 Make sure recvbuf is large enough on all procs, sendbuf 
matter only on root 

●	 MPI_Scatterv has additional arguments for variable sendcnt, 
and input stride 
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Gather to all


●	 MPI_Allgather(void *sendbuf, int sendcnt, 
MPI_Datatype sendtype, void *recvbuf, int recvcnt, 
MPI_Datatype recvtype, MPI_Comm comm) 

●	 Make sure recvbuf is large enough on all procs 

●	 MPI_Allgatherv has additional arguments for variable 
recvcnt, and output stride 

●	 Can be thought of as an MPI_Gather followed by an 
MPI_Bcast, with an unspecified root process 
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Vector Variants
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Differences in scattering 
● Non-contiguous parts, irregularly spaced apart, 

all end at the head of the receive buffers. 
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Binary trees
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Tree Variants

Sequential tree
Root process to 

all others in 
(n-1) steps 

for n processes
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2꜑log
2
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All to All Personalized Comm

●	 MPI_Alltoall(void *sendbuf, int sendcnt, MPI_Datatype 

sendtype, void *recvbuf, int recvcnt, MPI_Datatype recvtype, 
MPI_Comm comm) 

●	 Everybody sends something different to everyone else, like a 
scatter/gather for all. If what was getting sent was the same it 
would be like a bcast/gather for all. 

●	 This is the most stressful communication pattern for a 
communication network as it floods it with messages: P*(P-1) 
for P procs for certain direct implementations. 

●	 MPI_Alltoallv has additional arguments for variable sendcnt 
and recvcnt, and input and output strides 

●	 Other MPI-2 variants, at the heart of matrix transpose! 
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Matrix transpose

● Consider the simplest case of 1 element per proc. 

● Transpose accomplished with 1 call. 

● Othewise use derived datatypes or pack/unpack 
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Global Reductions

●	 An efficient way to perform an associative binary operation 

on a set of data spread over processes in a communicator 

●	 Operation can have an MPI defined handle: 

●	 MPI_MAX, MPI_MIN, MPI_MAXLOC, MPI_MINLOC 

●	 MPI_SUM, MPI_PROD 

●	 MPI_LAND, MPI_BAND, MPI_LOR, MPI_BOR,

MPI_LXOR, MPI_BXOR


operating on datatypes that make sense 

●	 MPI_MAXLOC and MPI_MINLOC require special 
datatypes, already predefined (note the Fortran ones and for 
more information look up the standard). 
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User defined binary ops

●	 MPI provides for user defined binary operations for the 

reduction routines: 

●	 MPI_Op_create(MPI_User_function *function, int commute, 
MPI_Op *op) 

●	 MPI_OP_CREATE(function, commute, op, ierr), external 
function, logical commute 

●	 If commute is true, then the operation is assumed to be 
commutative. Otherwise only the required associativity rule 
applies. 

●	 The function (non-MPI) needs to be of the form: 

●	 typedef void MPI_User_function (void *invec, void *inoutvec, 
int *len, MPI_Datatype  *type) 
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Reduce

●	 MPI_Reduce(void *sendbuf, void *recvbuff, int cnt, 

MPI_Datatype type, MPI_Op op, int root, MPI_Comm 
comm) 

●	 MPI_REDUCE(sendbuf, recvbuf, cnt, type, op, root, comm, 
ier) 
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Reduce to all

●	 MPI_Allreduce(void *sendbuf, void *recvbuff, int cnt, 

MPI_Datatype type, MPI_Op op, MPI_Comm comm) 

●	 MPI_ALLREDUCE(sendbuf, recvbuf, cnt, type, op, comm, 
ier) 
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Reduce - Scatter

●	 MPI_Reduce_scatter(void *sendbuf, void *recvbuff, int 

*revcnt, MPI_Datatype type, MPI_Op op, MPI_Comm 
comm) 

●	 MPI_REDUCE_SCATTER(sendbuf, recvbuf, recvcnt, type, 
op, comm, ier) 

●	 Can be considered as a 

MPI_Reduce(sendbuf, tmpbuf, cnt, type, op, root, comm);


MPI_Scatterv(tmpbuf, recvcnt, displs, type, recvbuff,

recvcnt[myid], type, root, comm);


where cnt is the total sum of the recvcnt values and displs[k] 
is the sum of the recvcnt for up to processor k-1. 

●	 Implementations may use a more optimal approach 
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Prefix operations 
●	 MPI_Scan(void *sendbuf, void *recvbuf, int cnt, 

MPI_Datatype type, MPI_Op op, MPI_Comm comm) 

●	 MPI_SCAN(sendbuf, recvbuf, cnt, type, op, comm, ier) 

●	 The scan is inclusive: result on proc P includes its data 
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Prefix operations in action
MPI_Scan

● Computes the partial reduction (scan) of input data in 
a communicator

● count=1;
MPI_Scan(send,recv,count,MPI_INT,MPI_PROD,
MPI_COMM_WORLD)

1 2 3 4

1 2 6 24

task 0 task 1 task 2 task 3

sendbuf (before)

recvbuf (after)

Figure by MIT OpenCourseWare.
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