
Today's agenda

● Homework discussion
● Bandwidth and latency in theory and in practice

● Paired and Nonblocking Pt2Pt Communications

● Other Point to Point routines

● Collective Communications: One-with-All

● Collective Communications: All-with-All

Parallel Programming for Multicore Machines Using OpenMP and MPI

A bit of theory

●	 Let “zero-message” latency be l and asymptotic

bandwidth be BW:

●	 Then most simplistic (w/o contention) linear model for the
time to communicate message of size L is T = l + L/BW

c

●	 In fact the model should be piecewise linear to distinguish
between (small,) eager and rendezvous protocols.

●	 Moreover, the BW that should be used is independent of L.
●	 Cost of memory copies can be a factor in BW.

●	 For small enough L, cache effects increase BW
●	 For very large L, TLB misses decrease BW

Parallel Programming for Multicore Machines Using OpenMP and MPI

Parallel Programming for Multicore Machines Using OpenMP and MPI

Latency Examples
● y-axis intercept is zero message latency

● Note the difference between Gigabit Ethernet, IPoIB,
DDR Infiniband and Shared Memory (same and
different socket) performance

Parallel Programming for Multicore Machines Using OpenMP and MPI

Bandwidth Examples

● Plot of the “effective bandwidth” Bw =L/T =2L/RTT
ef c

● Note cache effects, noise.

Deadlock around the ring

●	 Consider a ring communication scenario where everyone talks
to one's neighbour to the right around a circle. If synchronous
blocking communicatios are used (MPI_Ssend or MPI_Send
for large messages) the messages never get delivered as
everybody needs to send before receiving!

Parallel Programming for Multicore Machines Using OpenMP and MPI

Figure by MIT OpenCourseWare.

Bidirectional Exchange

●	 Consider the cases where two processes are exchanging

messages concurrently or a process is sending a message
while receiving another.

●	 There are two routines that provide an optimized deadlock
free macro for this operation:

●	 MPI_Sendrecv(int *sendbuf, int sendcnt, MPI_Datatype
sendtype, int dest, int sendtag, void *recvbuf, int recvcnt,
MPI_Datatype recvtype, int src, int recvtag, MPI_Comm
comm, MPI_Status *stat)

●	 MPI_Sendrecv_replace does not use the recvbuf, recvcnt and
recvtype arguments as the source array gets overwritten (like
a swap)

Parallel Programming for Multicore Machines Using OpenMP and MPI

Nonblocking communications

●	 The situation can be rectified by using nonblocking

communication routines that return immediately, without
making sure that the data has been safely taken care of.

●	 That way after the send the receive can be posted and the
deadlock is avoided

●	 But beware: Until such a time that the communication is
successfully completed, no pointer input arguments to the
routines may be modified as they wrong data/parameters
will be used when the communication does take place.

●	 This is unlike the situation with the blocking comms where
 upon return from the call, one is free to reuse the args.

●	 MPI_Ixxxx instead of MPI_xxxx for the names

Parallel Programming for Multicore Machines Using OpenMP and MPI

MPI nonblocking standard send

●	 MPI_Isend(void *buf, int cnt, MPI_Datatype type, int dest, int

tag, MPI_Comm comm, MPI_Request *req)

●	 MPI_ISEND(buf, cnt, type, dest, tag, comm, req, ierr)

●	 MPI_Wait(MPI_Request *req, MPI_Status *stat)

●	 MPI_WAIT(req, stat, ier)

●	 Call MPI_Isend, store the request handle, do some work to
keep busy and then call MPI_Wait with the handle to
complete the send.

●	 MPI_Isend produces the request handle, MPI_Wait consumes
it.

●	 The status handle is not actually used

Parallel Programming for Multicore Machines Using OpenMP and MPI

MPI nonblocking receive

●	 MPI_Irecv(void *buf, int cnt, MPI_Datatype type, int src, int

tag, MPI_Comm comm, MPI_Request *req)

●	 MPI_IRECV(buf, cnt, type, src, tag, comm, req, ier)

●	 MPI_Wait(MPI_Request *req, MPI_Status *stat)

●	 MPI_WAIT(req, stat, ier)

●	 Call MPI_Irecv, store the request handle, do some work to
keep busy and then call MPI_Wait with the handle to
complete the receive.

●	 MPI_Irecv produces the request handle, MPI_Wait consumes
it.

●	 In this case the status handle is actually used.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Deadlock avoidance

●	 If the nonblocking sends or receives are called back-

to-back with MPI_Wait we basically retrieve the
blocking behavior as MPI_Wait is a blocking call.
●	 To avoid deadlock we need to interlace nonblocking sends with

blocking receives, or nonblocking receives with blocking
sends; the nonblocking calls always precede the blocking ones.
Using both nonblocking calls may land us in trouble again
unless we reverse the order of Wait calls, or interlace the order
of send and receive calls (even #P).

Parallel Programming for Multicore Machines Using OpenMP and MPI

Figure by MIT OpenCourseWare.

Other nonblocking sends

●	 For each blocking send, a nonblocking equivalent:

●	 MPI_Issend: nonblocking synchronous send

●	 MPI_Ibsend: nonblocking asynchronous send

●	 MPI_Irsend: nonblocking ready send

●	 Take care not to confuse nonblocking send with asynchronous
send although the terminology has been used interchangeably
in the past!

●	 A successful blocking asynchronous send returns very quickly
and the send buffer can be reused.

●	 Any nonblocking call returns immediately and the buffer
cannot be tampered with until the corresponding blocking
MPI_Wait call has returned!

Parallel Programming for Multicore Machines Using OpenMP and MPI

Nonblocking Synchronous Send

●	 For example, an MPI_Issend() works like using an

unattended fax machine. You set up the fax to be sent,
go away but need to come and check if all's been sent.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Ok

Beep

Non blocking synchronous send

Figure by MIT OpenCourseWare.

Implementing nonblocking comms

●	 The actual communication in the case of the nonblocking calls

can take place at any given time between the call to the
MPI_Isend/Irecv operation and the corresponding MPI_Wait.
Fortran 90 issues!

●	 The moment it actually happens is implementation dependent
and in many cases it is coded to take place mostly within
MPI_Wait.

●	 On systems with "intelligent" network interfaces it is possible
for communications to be truly taking place concurrently with
the computational work the sending process is performing,
thus allowing for computation to "hide" communication;
otherwise nonblocking calls just help avoid deadlock without
helping performance.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Testing instead of Waiting

●	 MPI_Test(MPI_Request *req, int *flag, MPI_Status *stat)

●	 MPI_TEST(req,flag,stat,ier), logical flag

●	 Instead of calling the blocking MPI_Wait call MPI_Test; if
flag is true, the message has been received with more
information in stat and ier. Otherwise the routine returns and
can be called after a while to test for message reception again.

●	 On systems where one can have real overlap of
communication with computation MPI_Test allows finer
control over communication completion times.

Parallel Programming for Multicore Machines Using OpenMP and MPI

All, some and any

●	 Suppose one has a large number of outstanding nonblocking

calls to wait or test for. MPI provides us with special
shorthand routines for this case:

●	 MPI_Waitall/MPI_Testall deal with arrays of requests and
statuses as their arguments. They test for all pending
communication requests.

●	 Ditto for MPI_Waitsome/MPI_Testsome but they also mark the
locations of successful operations in another index array. They
return after some time at least one completion on pending
requests (usually more).

●	 Finally MPI_Waitany/MPI_Testany will test for all the pending
requests and return if they come across one that is completed or
if none are completed.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Other comms routines & handles

●	 MPI_Probe/MPI_IProbe will check for a message awaiting to

be received but will not actually receive it - one needs to call
MPI_Recv/MPI_Irecv for that.

●	 MPI_Cancel(MPI_Request *req) will mark a pending send or
receive for cancellation. One still needs to call MPI_Wait or
MPI_Test or MPI_Request_free to free the request handle.
The message may still be delivered at that time! MPICH
based implementations beware!

●	 MPI_Test_cancelled

●	 MPI_Send_init, MPI_Recv_init and MPI_Start, MPI_Startall:
Persistent comms

●	 MPI_PROC_NULL, MPI_REQUEST_NULL

Parallel Programming for Multicore Machines Using OpenMP and MPI

Probing

IF (rank.EQ.0) THEN

CALL MPI_SEND(i, 1, MPI_INTEGER, 2, 0, comm, ierr)

ELSE IF(rank.EQ.1) THEN

CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)

ELSE ! rank.EQ.2

DO i=1, 2

CALL MPI_PROBE(MPI_ANY_SOURCE, 0, comm, status, ierr)

IF (status(MPI_SOURCE) = 0) THEN

100 CALL MPI_RECV(i, 1, MPI_INTEGER, 0, 0, status, ierr)

ELSE

200 CALL MPI_RECV(x, 1, MPI_REAL, 1, 0, status, ierr)

END IF

END DO

END IF

Parallel Programming for Multicore Machines Using OpenMP and MPI

Persistent Communications

●	 In the case of very regular communications (say inside a

loop), some communication overhead can be avoided by
setting up a persistent communication request ("half" channel
or port). There is no binding of receiver to sender!

●	 MPI_Send_init(buf, count, datatype, dest, tag, comm, request)
sets up persistent sends. The request is inactive and
corresponds to an Isend(). Corresponding initialization calls
for Bsend, Ssend and Rsend exist.

●	 MPI_Recv_init(buf, count, datatype, source, tag, comm,
request) sets up persistent receives. The request is inactive and
corresponds to an Irecv().

Parallel Programming for Multicore Machines Using OpenMP and MPI

Persistent Communications (cont)

●	 To activate a persistent send or receive pass the request handle

to MPI_Start(request).

●	 For multiple persistent communications employ
MPI_Startall(count, array_of_requests). This processes
request handles in some arbitrary order.

●	 To complete the communication, MPI_Wait()/Test() and
friends are needed. Once they return, the request handle is
once again inactive but allocated. To deallocate it
MPI_Request_free() is needed. Make sure it operates on an
inactive request handle.

●	 Persistent sends can be matched with blocking or non-
blocking receives and vice-versa for the receives.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Wildcards & Constants

●	 MPI_PROC_NULL: operations specifying this do not
actually execute. Useful for not treating boundary
cases separately to keep code cleaner.

●	 MPI_REQUEST_NULL: The value of a null handle,
after it is released by the MPI_Wait()/Test() family of
calls or by MPI_Request_free()

●	 MPI_ANY_SOURCE: Wild card for source

●	 MPI_ANY_TAG: Wildcard for tag

●	 MPI_UNDEFINED: Any undefined return value

Parallel Programming for Multicore Machines Using OpenMP and MPI

Collective Comms

●	 Collective communications involve a group of processes,

namely all processes in a communicator

●	 All processes call the routine which is blocking and has no
tag; assumed to be implementor optimized!

●	 Any receive buffers all have to be the same size and be
distinct from send buffers (Fortran semantics)

●	 Operations can be one-to-all, all-to-one and all-to-all in nature
and combinations thereof.

●	 They can involve data exchange and combination as well as
reduction operations

●	 Many routines have a "vector" variant MPI_xxxxv

Parallel Programming for Multicore Machines Using OpenMP and MPI

Synchronization

● MPI_Barrier(MPI_Comm comm)

● MPI_BARRIER(comm, ier)

● Forces synchronization for:
● timing purposes

● non-parallel I/O purposes

● debugging

● Costly for large numbers of
processes, try to avoid.

Parallel Programming for Multicore Machines Using OpenMP and MPI

??

?
?All here?

Figure by MIT OpenCourseWare.

Broadcast

●	 MPI_Bcast(void *buf, int cnt, MPI_Datatype type, int
root, MPI_Comm comm)

●	 MPI_BCAST(buf, cnt, type, root, comm, ier)

●	 root has to be the same on all procs, can be nonzero

Parallel Programming for Multicore Machines Using OpenMP and MPI

b e d

b e d b e d b e d b e d b e d

Before
bcast

After
bcast

e.g., root = 1

Figure by MIT OpenCourseWare.

Gather

●	 MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype

sendtype, void *recvbuf, int recvcnt, MPI_Datatype recvtype,
int root, MPI_Comm comm)

●	 Make sure recvbuf is large enough on root where it matters,
elsewhere it is ignored

●	 MPI_Gatherv has additional arguments for variable recvcnt,
and output stride

Parallel Programming for Multicore Machines Using OpenMP and MPI

Before
gather

After
gather

e.g., root = 1

A

A

B

B

C

C

D

D E

A B C D E

E

Figure by MIT OpenCourseWare.

Scatter

●	 MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype

sendtype, void *recvbuf, int recvcnt, MPI_Datatype recvtype,
int root, MPI_Comm comm)

●	 Make sure recvbuf is large enough on all procs, sendbuf
matter only on root

●	 MPI_Scatterv has additional arguments for variable sendcnt,
and input stride

Parallel Programming for Multicore Machines Using OpenMP and MPI

Before
scatter

After
scatter

e.g., root = 1

A B C D

A B C D E

E

A B C D E

Figure by MIT OpenCourseWare.

Gather to all

●	 MPI_Allgather(void *sendbuf, int sendcnt,
MPI_Datatype sendtype, void *recvbuf, int recvcnt,
MPI_Datatype recvtype, MPI_Comm comm)

●	 Make sure recvbuf is large enough on all procs

●	 MPI_Allgatherv has additional arguments for variable
recvcnt, and output stride

●	 Can be thought of as an MPI_Gather followed by an
MPI_Bcast, with an unspecified root process

Parallel Programming for Multicore Machines Using OpenMP and MPI

Vector Variants

Parallel Programming for Multicore Machines Using OpenMP and MPI

100

100 99 98

180

100

180

100

180

100

180

100

180

100

180

Stride [1]

Stride [1]

At root

At root

All process

All process

100 99 98

rbuf

Sendbuf

offset = 0;
for (i=0; i<gsize; ++i) {
 displs[i] = offset;
 offset += stride [i];
 scounts [i] = 100 - i;
}

Figure by MIT OpenCourseWare.

Differences in scattering
● Non-contiguous parts, irregularly spaced apart,

all end at the head of the receive buffers.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Proc. 0

Proc. 0

Proc. 1

Proc. 2

Proc. 3

Proc. 0

MPI_Scatter MPI_Scatterv

Proc. 0

Proc. 2

Proc. 3

Proc. 1

Figure by MIT OpenCourseWare.

Binary trees

Parallel Programming for Multicore Machines Using OpenMP and MPI

1 4 8235 7

4*p

2*p2*p

pppp

6

Step 0

Step 1

Step 2

Step 3

1

1 2

1 2 43

1 4 8235 76

Step 0

Step 1

Step 2

Step 3

1

1 2

1 2 43

Broadcast

Scatter

Figure by MIT OpenCourseWare.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Tree Variants

Sequential tree
Root process to

all others in
(n-1) steps

for n processes

Binary tree
All processes

(apart from root)
receive and send

to at most 2
others. Use

2꜑log
2
(n+1)꜌-

1.5±0.5 steps
for n processes

Chain
Message passed
in a chain to all

others in
(n-1) steps

for n processes

Binomail tree
In each step a
process with

data sends to its
“half-the-

remaining-size”
neighbor. Use
꜑log

2
(n-1)꜌+1

steps
for n processes

0

1

A

2 3 4 5 6 7

Figure by MIT OpenCourseWare.

C

0

1

2 3

4

5 6

7

Figure by MIT OpenCourseWare.

B

0

1

2

33 4

5

6

7

Figure by MIT OpenCourseWare.

D

0

1

2

33

4

5

6

7

Figure by MIT OpenCourseWare.

All to All Personalized Comm

●	 MPI_Alltoall(void *sendbuf, int sendcnt, MPI_Datatype

sendtype, void *recvbuf, int recvcnt, MPI_Datatype recvtype,
MPI_Comm comm)

●	 Everybody sends something different to everyone else, like a
scatter/gather for all. If what was getting sent was the same it
would be like a bcast/gather for all.

●	 This is the most stressful communication pattern for a
communication network as it floods it with messages: P*(P-1)
for P procs for certain direct implementations.

●	 MPI_Alltoallv has additional arguments for variable sendcnt
and recvcnt, and input and output strides

●	 Other MPI-2 variants, at the heart of matrix transpose!

Parallel Programming for Multicore Machines Using OpenMP and MPI

Matrix transpose

● Consider the simplest case of 1 element per proc.

● Transpose accomplished with 1 call.

● Othewise use derived datatypes or pack/unpack

Parallel Programming for Multicore Machines Using OpenMP and MPI

A0 B0 C0 D0 E0 F0

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

A3 B3 C3 D3 E3 F3

A4 B4 C4 D4 E4 F4

A5 B5 C5 D5 E5 F5

Data

Send Buffer Receive Buffer

Processor

A0 A1 A2 A3 A4 A5

B0 B1 B2 B3 B4 B5

C0 C1 C2 C3 C4 C5

D0 D1 D2 D3 D4 D5

E0 E1 E2 E3 E4 E5

F0 F1 F2 F3 F4 F5

Data

Processor

Figure by MIT OpenCourseWare.

Global Reductions

●	 An efficient way to perform an associative binary operation

on a set of data spread over processes in a communicator

●	 Operation can have an MPI defined handle:

●	 MPI_MAX, MPI_MIN, MPI_MAXLOC, MPI_MINLOC

●	 MPI_SUM, MPI_PROD

●	 MPI_LAND, MPI_BAND, MPI_LOR, MPI_BOR,

MPI_LXOR, MPI_BXOR

operating on datatypes that make sense

●	 MPI_MAXLOC and MPI_MINLOC require special
datatypes, already predefined (note the Fortran ones and for
more information look up the standard).

Parallel Programming for Multicore Machines Using OpenMP and MPI

User defined binary ops

●	 MPI provides for user defined binary operations for the

reduction routines:

●	 MPI_Op_create(MPI_User_function *function, int commute,
MPI_Op *op)

●	 MPI_OP_CREATE(function, commute, op, ierr), external
function, logical commute

●	 If commute is true, then the operation is assumed to be
commutative. Otherwise only the required associativity rule
applies.

●	 The function (non-MPI) needs to be of the form:

●	 typedef void MPI_User_function (void *invec, void *inoutvec,
int *len, MPI_Datatype *type)

Parallel Programming for Multicore Machines Using OpenMP and MPI

Reduce

●	 MPI_Reduce(void *sendbuf, void *recvbuff, int cnt,

MPI_Datatype type, MPI_Op op, int root, MPI_Comm
comm)

●	 MPI_REDUCE(sendbuf, recvbuf, cnt, type, op, root, comm,
ier)

Parallel Programming for Multicore Machines Using OpenMP and MPI

Figure by MIT OpenCourseWare.

Before MPI_REDUCE

After MPI_REDUCE

root = 1

d e f g h i j k l m n oa b c

d e f g h i j k l m n oa b c

inbuf
result

aodogojom

o o o o

Reduce to all

●	 MPI_Allreduce(void *sendbuf, void *recvbuff, int cnt,

MPI_Datatype type, MPI_Op op, MPI_Comm comm)

●	 MPI_ALLREDUCE(sendbuf, recvbuf, cnt, type, op, comm,
ier)

Parallel Programming for Multicore Machines Using OpenMP and MPI

Figure by MIT OpenCourseWare.

Before MPI_ALLREDUCE

After MPI_ALLREDUCE

d e f g h i j k l m n oa b c

d e f g h i j k l m n oa b c

inbuf
result

aodogojom

o o o o

Reduce - Scatter

●	 MPI_Reduce_scatter(void *sendbuf, void *recvbuff, int

*revcnt, MPI_Datatype type, MPI_Op op, MPI_Comm
comm)

●	 MPI_REDUCE_SCATTER(sendbuf, recvbuf, recvcnt, type,
op, comm, ier)

●	 Can be considered as a

MPI_Reduce(sendbuf, tmpbuf, cnt, type, op, root, comm);

MPI_Scatterv(tmpbuf, recvcnt, displs, type, recvbuff,

recvcnt[myid], type, root, comm);

where cnt is the total sum of the recvcnt values and displs[k]
is the sum of the recvcnt for up to processor k-1.

●	 Implementations may use a more optimal approach

Parallel Programming for Multicore Machines Using OpenMP and MPI

Prefix operations
●	 MPI_Scan(void *sendbuf, void *recvbuf, int cnt,

MPI_Datatype type, MPI_Op op, MPI_Comm comm)

●	 MPI_SCAN(sendbuf, recvbuf, cnt, type, op, comm, ier)

●	 The scan is inclusive: result on proc P includes its data

Parallel Programming for Multicore Machines Using OpenMP and MPI

Figure by MIT OpenCourseWare.

Before MPI_SCAN

After MPI_SCAN

d e g g h i j k l m n oa b c

d e f g h i j k l m n oa b c

inbuf
result

aodogojoma

o o o o

aod aodog aodogoj

Done in parallel

Parallel Programming for Multicore Machines Using OpenMP and MPI

Prefix operations in action
MPI_Scan

● Computes the partial reduction (scan) of input data in
a communicator

● count=1;
MPI_Scan(send,recv,count,MPI_INT,MPI_PROD,
MPI_COMM_WORLD)

1 2 3 4

1 2 6 24

task 0 task 1 task 2 task 3

sendbuf (before)

recvbuf (after)

Figure by MIT OpenCourseWare.

MIT OpenCourseWare
http://ocw.mit.edu

12.950 Parallel Programming for Multicore Machines Using OpenMP and MPI
IAP 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Agenda
	BLT
	Latency graphs
	Bandwidth graphs
	ring
	SendRecv
	Nonblock
	MPI_Isend
	MPI_Irecv
	no deadlock
	other nb
	NBSS
	implement
	MPI_Test
	All,Any
	Other P2PC
	Probes
	Persist
	Persist2
	Constants
	Collective
	barrier
	Bcast
	Gather
	Scatter
	Allgather
	VVariants
	Scatters
	Trees
	TreeVar
	AAPC
	All to All basics
	Reductions
	Userdef
	Reduce
	Allreduce
	Reduce-Scatter
	Prefix
	MPI_Scan

