
12.950

Parallel Programming
for

Multicore Machines
Using

OpenMP and MPI
Dr. C. Evangelinos

MIT/EAPS

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Parallel Programming for Multicore Machines Using OpenMP and MPI

Course basics
● Web site: http://stellar.mit.edu/S/course/12/ia10/12.950/

● https://wikis.mit.edu/confluence/display/12DOT950ia10/Home

● Homeworks: One per day, incremental, finally due Feb 1.

● Discussion on homework problems during next class

● Grade: A/B/C etc.

● Textbook: none! But suggested books on Web site.

● Look at a lot of other support material on the Web site, including
instructions about virtual machines.

● Please sign up with your name, Athena e-mail (if existing) and
whether you want to be a listener or not. You can change this
before the end of the course.

http://stellar.mit.edu/S/course/12/ia10/12.950/
https://wikis.mit.edu/confluence/display/12DOT950ia10/Home

Parallel Programming for Multicore Machines Using OpenMP and MPI

StarHPC
● A VMware Player/VirtualBox image with OpenMPI

and the GNU and Sun compilers for OpenMP for
development alongside Eclipse PTP and SunStudio
12/Netbeans for an IDE. Link to download the virtual
machine will appear on the class website.

● http://web.mit.edu/star/hpc/ contains detailed
instructions on using the Virtual Machines.

● E-mail star@mit.edu for support and troubleshooting.

http://web.mit.edu/star/hpc/
http://web.mit.edu/star/hpc/

Course Syllabus

● Day 1 (Parallel Computing and OpenMP):

● Fundamentals of Shared Memory Programming

● Basic OpenMP concepts, PARALLEL directive

● Data scoping rules

● Basic OpenMP constructs/directives/calls

● Examples

● Parallelizing an existing code using OpenMP

● More advanced OpenMP directives & functions

● OpenMP Performance issues

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Syllabus cont.
● Day 2 (Parallel Computing and MPI Pt2Pt):

● OpenMP 3.0 enhancements

● Fundamentals of Distributed Memory Programming

● MPI concepts

● Blocking Point to Point Communications

● Day 3 (More Pt2Pt & Collective communications):
● Paired and Nonblocking Point to Point Communications

● Other Point to Point routines

● Collective Communications: One-with-All

● Collective Communications: All-with-All

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Syllabus cont.
● Day 4 (advanced MPI-1):

● Collective Communications: All-with-All

● Derived Datatypes

● Groups, Contexts and Communicators

● Topologies

● Language Binding issues

● The Runtime and Environment Management

● The MPI profiling interface and tracing

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Syllabus cont.

● Day 5 (more MPI-1 & Parallel Programming):

● Hybrid MPI+OpenMP programming

● MPI Performance Tuning & Portable Performance

● Performance concepts and Scalability

● Different modes of parallelism

● Parallelizing an existing code using MPI

● Using 3rd party libraries or writing your own library

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Outline

● Fundamentals of Shared Memory Programming

● Basic OpenMP concepts, PARALLEL directive

● Data scoping rules

● Basic OpenMP constructs/directives/calls

● Examples

● Parallelizing an existing code using OpenMP

● More advanced OpenMP directives & functions

● OpenMP Performance and Correctness issues

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Acknowledgments

● The OpenMP ARB

● Tim Mattson (Intel) & Rudolf Eigenmann (Purdue)

● Miguel Hermanss (UP Madrid)

● Ruud van der Pas (Sun Micro)

● NERSC, LLNL

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Shared Memory Programming

● Under the assumption of a single address space one uses multiple control

streams (threads, processes) to operate on both private and shared data.

● Shared data: synchronization, communication, work

● In shared arena/mmaped file (multiple processes)

● In the heap of the process address space (multiple threads)

Process
address
space

Thread

Private
stack

Thread

Private
stack

Heap

Single
process
space

Process

Private
stack

Private
heap

Process

Private
stack

Private
heap

Shared
memory

arena

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

OpenMP programming model
●	 The OpenMP standard provides an API for shared memory

programming using the fork-join model.

●	 Multiple threads within the same address space

●	 Code parallelization can be incremental

●	 Supports both coarse and fine level parallelization

●	 Fortran, C, C++ support

Parallel Programming for Multicore Machines Using OpenMP and MPI

F
O
R
K

J
O
I
N

Parallel region

F
O
R
K

J
O
I
N

Master thread

{ Parallel region{

Figure by MIT OpenCourseWare.

mailto:ce107@computer.org

OpenMP conceptual overview

●	 Threads read and write shared variables

●	 No need for explicit communications with messages

●	 Use synchronization to protect against race conditions

●	 Shared variable scope attributes help minimize the

necessary synchronization

●	 No sense to try and run in parallel loops with loop-carried
dependencies

●	 Threads use their own private variables to do work that does
not need to be globally visible outside the parallel region

●	 No support for proper parallel I/O

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

OpenMP history

●	 During the early multiprocessor days: vendor specific

●	 Early standardization efforts: PCF, ANSI X3H5

●	 SGI/Cray merger gave impetus to new efforts

●	 OpenMP: Open Multi Processing

●	 ARB (Architecture Review Board):

●	 Software/hardware vendors, ISVs & DOE/ASCI

●	 Evolving standard: currently common at 3.0, some compilers still
implement just Fortran 1.1, C/C++ 1.0. Most Fortran 2.0 or 2.5
however. Version 3.0 support is becoming more common.

●	 JOMP for Java (academic project)

●	 OpenMP uses compiler directives & library routines

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Directives

●	 Directives are additions to the source code that can be ignored by the compiler:

●	 Appearing as comments (OpenMP Fortran)

●	 Appearing as preprocessor macros (OpenMP C/C++)

●	 Hence a serial and a parallel program can share the same source code - the
serial compiler simply overlooks the parallel code additions

●	 Addition of a directive does not break the serial code

●	 However the wrong directive or combination of directives can give rise
to parallel bugs!

●	 Easier code maintenance, more compact code

●	 New serial code enhancements outside parallel regions will not break the
parallel program.

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

OpenMP Library and Environment

●	 Aside from directives, OpenMP runtime library:

●	 Execution environment routines:

●	 Who am I? How many of us are there? How are we
running?

●	 Lock routines

●	 Timing routines

●	 Environment variables are another, easy way to modify the parallel
program's behavior from the command line, before execution.

●	 Nested parallelism is allowed

●	 A dynamic change in the number of threads is allowed before a
parallel region is entered

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Nested and Dynamic Parallelism
●	 By default, the original number of forked

threads is used throughout

●	 If omp_set_dynamic() is used or
OMP_DYNAMIC is TRUE, this number
can be reset.

●	 Nested parallel constructs are run serialized
unless omp_set_nested() is used or
OMP_NESTED is TRUE.

●	 Implementations are not required to
implement either: Use functions
omp_get_dynamic/omp_get_nested

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Basics of Directives

● Composed of: sentinel construct [clauses]

● Fortran fixed form: COMP, cOMP, *$OMP, !$OMP

● Fortran free form: !$OMP

● Standard Fortran continuation characters allowed

C$OMP parallel default(none) shared(a,b) private(c,d)

C$OMP& reduction(a,+)

● C/C++: #pragma omp

● Preprocessor macros allowed after #pragma omp

● Continuation accomplished with \

#pragma omp parallel default(none) shared(a,b) \

reduction(a,+)

● Clause order is immaterial

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Conditional Compilation
●_OPENMP macro defined by the compiler

●Conditional compilation of OpenMP library calls
●Enclose within:
#ifdef _OPENMP

/* C/C++ (or Fortran code) calling OpenMP runtime lib */

whoami = omp_get_thread_num() + 1;

#endif

●Precede by !$/C$/c$/*$ in Fortran:
!$ whoami = omp_get_thread_num() + &

!$ & 1

●Fixed form formating rules apply

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Static and Dynamic Extent

●	 Directives apply to the structured block that follows:

●	 Structured block:

● 1 point of entry, 1 point of exit

● Illegal to branch out of block, only exit(), stop allowed

●	 For Fortran: next line or marked with an !$OMP END

●	 For C/C++: next line or enclosed in {}

●	 Lexical scope forms the static extent.

●	 Any function/subroutine calls within a block give rise to a dynamic extent that
the directive also applies to.

●	 Dynamic extent includes static extent + statements in call tree
●	 The called code can contain further OpenMP directives

● A directive in a dynamic but not a static extent is called orphan(ed)

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Orphan directives

Dynamic
extent

includes
static
extent

Static or lexical
extent of parallel

region

C$OMP PARALLEL

call foo(q)

C$OMP END PARALLEL

call foo(q)

call bar

Subroutine foo(a)

real b, c

b = 1.0

Orphan
directive

C$OMP DO PRIVATE(b,c)

DO i=1,1000

+

c = log(real(i)+b)

b = c

a = c

ENDDO

return

end

Different compilation unit One compilation unit

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Parallel Directive

Most basic of all directives, it implies the creation of a

team of extra threads to execute the structured block:

!$OMP PARALLEL [clauses]

!some Fortran structured block

!$OMP END PARALLEL

#pragma omp parallel [clauses]

{

/* some C/C++ structured block

*/

}

●Structured block:
●Implicit barrier at the end
●Whole block executed in parallel
●Master thread forks slaves, and
participates in parallel computation
●At the end of the region, slaves go
to sleep, spin or are destroyed

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Parallel Directive Example

PROGRAM PARALLEL

IMPLICIT NONE Look at hello_omp.f90
!$OMP PARALLEL

write (6,*) "hello world!"

!$OMP END PARALLEL

END PROGRAM PARALLEL

To run on a system:

% setenv OMP_NUM_THREADS 4

% sunf90 -xopenmp hello_omp.f90

%./a.out

hello world!

hello world!

hello world!

hello world!

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Parallel Directive Clauses

● Control clauses:

● IF (scalar_logical_expression)

● Conditional parallel execution (is there enough work to do?)

● NUMTHREADS(scalar_logical_expression)

● Hardcodes the number of threads (useful for sections)

● Overrides runtime library call, environment variable

● Data sharing attribute clauses (lowercase for C/C++)

● PRIVATE (list), SHARED (list)

● DEFAULT (PRIVATE | SHARED | NONE)

● FIRSTPRIVATE (list)

● REDUCTION (operator: list)

● COPYIN (list)

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

5

Example of IF clause

Program ompif

integer N

read (5,*) N Look at ompif.f90LookLook at ompif.f90at ompif.f90
!$OMP PARALLEL IF(N > 1000)

write(6,*) "Here I am running"

!$OMP END PARALLEL

END

To run with 3 threads:

% setenv OMP_NUM_THREADS 3

% ./a.out

Here I am running

% ./a.out

Here I am running

Here I am running

To run with 9 threads:

% setenv OMP_NUM_THREADS 9

%./a.out

5

Here I am running

% ./a.out

1000000

Here I am running

Here I am running

Here I am running

Here I am running

Here I am running

Here I am running

Here I am running

Here I am running

Here I am running

Parallel Programming for Multicore Machines Using OpenMP and MPI Here I am running

1000000

mailto:ce107@computer.org

Default Data Sharing Attributes
●	 Threads share global variables

●	 Fortran: COMMON blocks, SAVE variables, MODULE
variables

●	 C: File scope variables, static, storage on the heap
●	 Stack (automatic) variables are private:

●	 Automatic variables in a structured block

●	 Local variables in subroutines called from parallel

●	 Local pointers pointing to heap storage

●	 Loop index variables are by default private

●	 Defaults can be changed with the DEFAULT clause

●	 Default cannot be private in C/C++

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

DEFAULT example

iwork = 1000 subroutine foo(ido, iwork, np)

common /stuff/ a(iwork) integer ido, iwork, np

C$OMP PARALLEL PRIVATE(np, ieach) common /input/ A(iwork)

np = omp_get_num_threads() real temp(ido)

ieach = iwork/np DO i = 1, ido

call foo(ieach, iwork, np) temp(i) = A((np-1)*ido+i)

C$OMP END PARALLEL write(6,*) temp(i)

ENDDO

iwork = 1000

common /stuff/ a(iwork)

C$OMP PARALLEL DEFAULT(PRIVATE) SHARED(a, iwork)

np = omp_get_num_threads()

ieach = iwork/np

call foo(ieach, iwork, np)

C$OMP END PARALLEL

DEFAULT(NONE) serves as a way of forcing the user to

specify the data attribute for each variable to avoid bugs.

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

PRIVATE clause

●	 A private variable is uninitialized upon entry to the parallel region

●	 There is no storage association with the variable outside the region

●	 However at the end of the parallel region the outside variable's
value cannot be defined on the basis of its prior to the parallel
region value.

●	 The example to the right contains
Look at problem-private.f

many problems:	 program problem

real A

●	 The value of A is uninitialized A = 10.0
C$OMP PARALLEL PRIVATE(A)

A = A + LOG(A)
●	 The value of A is undefined
C$OMP END PARALLEL

print *, A

end

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Parallel Programming for Multicore Machines Using OpenMP and MPI

FIRSTPRIVATE clause
● FIRSTPRIVATE is a variation on PRIVATE with the value

of the variable on each thread initialized by the value of the
variable outside the parallel region

● This solves one of the two program problem
 real A

problems seen before but the A = 10.0

final value is still undefined, C$OMP PARALLEL FIRSTPRIVATE(A)

could be 10.0
 A = A + LOG(A)
C$OMP END PARALLEL
 print *, A
 end

● This can be corrected in the case of DO/for or SECTION
worksharing constructs through use of the LASTPRIVATE
clause and for SINGLE through the COPYPRIVATE clause

Look at problem-firstprivate.f

mailto:ce107@computer.org

REDUCTION clause

●	 It enables reduction binary operations (arithmetic, logical and intrinsic

procedures like MAX) in an optimal manner (as they require atomic updates).

●	 Scalar variables are initialized to relevant values and at the end of the loop the
value of the variable before the parallel execution is also included in the
reduction.

!$OMP PARALLEL DEFAULT(PRIVATE) REDUCTION(+:I) &

!$ & REDUCTION(*:J) REDUCTION(MAX:K)

tnumber=OMP_GET_THREAD_NUM()

I = I + tnumber

J = J * tnumber Look at reduction.f90
K = MAX(K,tnumber)

!$OMP END PARALLEL

PRINT *, " I=",I," J=", J," K=",K

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Worksharing constructs
●	 Worksharing constructs allow us to distribute

different work to threads in a parallel region:
Iterative worksharing:
!$OMP DO

DO i=1,N

! some fortran work

ENDDO

!$OMP END DO

!$OMP WORKSHARE

FORALL (i=1,N)

! some Fortran 90/95 work

!$OMP END WORKSHARE
Non-iterative worksharing:
!$OMP SECTIONS
!$OMP SECTION

! some fortran work

!$OMP SECTION

! some other fortran work

!$OMP END SECTIONS

Serial work by any processor:
!$OMP SINGLE

!some serial work

!$OMP END SINGLE

Iterative worksharing:
#pragma omp for

for (i=0; i<N; i++) {

/* some C/C++ work */

}

Non-iterative worksharing:
#pragma omp sections

{

#pragma omp section

{

/* some C/C++ work */

}

#pragma omp section

{

/* some other C/C++ work */

}

}

Serial work by any processor:
#pragma omp single

{

/* some serial work */

}

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

DO/for construct

C$OMP PARALLEL PRIVATE(mytid,many,ntill,i)	 C$OMP PARALLEL

C$OMP DO

mytid = omp_get_thread_num()	 do i=1,N

many = N/omp_get_num_threads() write(6,*) foo

enddo

ntill = (mytid+1)*many -1 C$OMP END DO

C$OMP END PARALLEL

do i=mytid*many, ntill

write(6,*) foo

enddo

C$OMP END PARALLEL

C/C++ for loops need to be
in canonical shape:

initialization
comparison test (order)
increment of loop index
loop limits are invariant
increment is invariant

Parallel Programming for Multicore Machines Using OpenMP and MPI

Figure by MIT OpenCourseWare.

mailto:ce107@computer.org

DO/for clauses

● The DO/for construct has the following clauses:

● Data scope attribute clauses (lowercase for C/C++)
● PRIVATE (list), SHARED (list)
● FIRSTPRIVATE (list), LASTPRIVATE (list)
● REDUCTION (operator: list)
● COPYIN (list)

● Execution control clauses
● SCHEDULE (type, chunk)
● ORDERED
● NOWAIT (at the !$OMP END DO for Fortran)

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

WORKSHARE construct

● Added in OpenMP 2.0 to cover F90/F95

● Works on array notation operations, forall & where statements
& constructs and transformational array intrinsics like

matmul, dot_product, cshift etc.

● Can only include ATOMIC and CRITICAL directives

● Private variables cannot be modified inside the block

● Applies only to lexical scope

● No function/subroutine calls inside the block

● There is an implicit barrier
!$OMP WORKSHARE

after every array statement A = B + 1.0

FORALL (i=1:100:2) B = A-1.5

WHERE (A .NE. 1.5) A = B

!$OMP END WORKSHARE NOWAIT

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

SECTIONS & SINGLE constructs

C$OMP PARALLEL PRIVATE(mytid)

mytid = omp_get_thread_num()

if (mytid .eq. 0) then

call foo

endif

if (mytid .eq. 1) then

call bar

endif

C$OMP END PARALLEL

The SINGLE construct allows code
that is serial in nature to be executed
inside a parallel region. The thread executing the code will be the
first to reach the directive in the code. It doesn't have to be the
master thread. All other threads proceed to the end of the
structured block where there is an implicit synchronization.

C$OMP PARALLEL

C$OMP SECTIONS

call foo

C$OMP SECTION

call bar

C$OMP END PARALLEL

Parallel Programming for Multicore Machines Using OpenMP and MPI

Figures by MIT OpenCourseWare.

mailto:ce107@computer.org

SECTION & SINGLE clauses

●	 The SECTION construct has the following clauses:

●	 Data scope attribute clauses (lowercase for C/C++)

●	 PRIVATE (list), FIRSTPRIVATE (list), LASTPRIVATE (list)

●	 REDUCTION (operator: list)

●	 COPYIN (list)

●	 NOWAIT (at the !$OMP END SECTION for Fortran)

●	 The SINGLE construct has the following clauses:

●	 Data scope attribute clauses (lowercase for C/C++)

●	 PRIVATE (list), FIRSTPRIVATE (list)

●	 NOWAIT (at the !$OMP END SINGLE for Fortran)

●	 COPYPRIVATE(list) (at the !$OMP END SINGLE for Fortran, cannot
coexist with NOWAIT)

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

MASTER

●	 Only the master thread executes the section

●	 The rest of the threads proceed to continue execution from
the end of the master section

●	 There is no barrier at the end of the master section
●	 Same as SINGLE NOWAIT but only for master thread

C$OMP PARALLEL

..

C$OMP MASTER

print*, "Init"

C$OMP END MASTER

..

C$OMP END PARALLEL

#pragma omp parallel

{

..

#pragma omp master

printf("Init\n");

..

}

Not really a synchronization construct!

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Use of NOWAIT

●	 Implicit synchronizations at the

end of worksharing constructs,
even in the absence of an !
$OMP END directive.

●	 Sometimes unnecessary - user
can specify no synchronization
using NOWAIT judiciously.

●	 Similar care needs to be taken
when using shared variables
inside a loop on both RHS &
LHS.

!$OMP DO

DO i=1, N

A(i) = log(B(i))

ENDDO

!$OMP END DO NOWAIT

!$OMP DO

DO i=1, M

C(i) = EXP(D(i))

ENDDO

!$OMP END DO NOWAIT

!$OMP DO

DO i=1, M

D(i) = C(i)/D(i)

ENDDO

!$OMP END DO

$!OMP DO

DO i=1, N

B(i) = 1.0*i+ 0.5

A(i) = A(i)*B(i)

ENDDO

$!OMP END DO

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

LASTPRIVATE clause

●	 LASTPRIVATE(variable) will make sure that what

would have been the last value of the private variable
if the loop had been executed sequentially gets
assigned to the variable outside the scope

●	 Look at the sequence of problem-*.f files in the homework.

program problem

real A(4)

DO I=1,4

A(I) = 10.0

ENDDO

C$OMP PARALLEL FIRSTPRIVATE(A)

C$OMP DO LASTPRIVATE(A)

DO I=1,4

A(I) = A(I) + LOG(A(I))

ENDDO

C$OMP END DO

print *, "region result is ", A

C$OMP END PARALLEL

print *, "result is ", A

end

program problem

real A(4)

DO I=1,4

A(I) = 10.0

ENDDO

C$OMP PARALLEL DO FIRSTPRIVATE(A) C$

&LASTPRIVATE(A)

DO I=1,4

A(I) = A(I) + LOG(A(I))

ENDDO

C$OMP END PARALLEL DO

print *, "result is ", A

end

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Combined Worksharing Directives

●	 For convenience combinations of PARALLEL with

DO/for, SECTIONS and WORKSHARE are allowed,
with reasonable combinations of allowed clauses

●	 NOWAIT does not make sense in this case

●	 !$OMP PARALLEL DO

●	 #pragma omp parallel for

●	 !$OMP PARALLEL SECTIONS

●	 #pragma omp parallel sections

●	 !$OMP PARALLEL WORKSHARE

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Allowed Combinations

Clause PARALLEL DO/fo
r

SECTIONSSINGLE WORKSHAR
E

PARALLEL
DO/for

PARALLEL
SECTIONS

PARALLEL
WORKSHARE

IF OK OK OK OK

PRIVATE OK OK OK OK OK OK OK

SHARED OK OK OK OK OK

DEFAULT OK OK OK OK

FIRSTPRIVATE OK OK OK OK OK OK OK

LASTPRIVATE OK OK OK OK

REDUCTION OK OK OK OK OK OK

COPYIN OK OK OK OK

SCHEDULE OK OK

ORDERED OK OK

NOWAIT OK OK OK OK

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Synchronization

●	 Explicit synchronization is sometimes necessary in OpenMP programs.

There's several constructs & directives handling it:
●	 CRITICAL: Mutual Exclusion

● !$OMP CRITICAL [name]/!$OMP END CRITICAL [name]
● #pragma omp critical [name]

●	 ATOMIC: Atomic Update

● !$OMP ATOMIC, #pragma omp atomic
●	 BARRIER: Barrier Synchronization

● !$OMP BARRIER, #pragma omp barrier
●	 MASTER: Master Section

● !$OMP MASTER/!$OMP END MASTER
● #pragma omp master

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

BARRIER

●	 Barrier Synchronization
●	 Threads wait until all threads reach this point
●	 Implicit barrier at the end of each parallel region
●	 Costly operation, to be used judiciously
●	 Be careful not to cause deadlock:

●	 No barrier inside of CRITICAL,

MASTER, SECTIONS, SINGLE!

C$OMP PARALLEL #pragma omp parallel

.. {

C$OMP BARRIER ..

.. #pragma omp barrier

C$OMP END PARALLEL ..

}

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

CRITICAL

●	 Can be named (strongly suggested)

●	 these names have a global scope and must not conflict with
subroutine or common block names

●	 They ensure that only one thread at a time is in the critical section.
The rest wait at the beginning of the section, or proceed after
finishing their work.

●	 Essentially serializes work - beware of the drop in performance
and use when necessary!

C$OMP PARALLEL	 #pragma omp parallel

.. {

..
C$OMP CRITICAL(mult)

A(i) = A(i) * vlocal #pragma omp critical(mult)

C$OMP END CRITICAL(mult) A(i) *= vlocal

..
..

C$OMP END PARALLEL }

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

ed

ATOMIC

● Optimization of mutual exclusion for atomic updates

● Not structured, applies to immediately following statement
● At the heart of reduction operations (look at density.f90)

!$OMP ATOMIC

GRID_MASS(BIN(I)) = GRID_MASS(BIN(I)) + PARTICLE_MASS(I)

!$OMP ATOMIC

GRID_N(BIN(I)) = GRID_N(BIN(I)) + 1

● Enables fast implementation on some HW
● In all other cases critical sections are actually us

C$OMP PARALLEL #pragma omp parallel

.. {

C$OMP ATOMIC
 ..

A(i) = A(i) - vlocal #pragma omp atomic

.. A(i) -= vlocal

C$OMP END PARALLEL
 ..

}

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Synchronization Examples
●	 A case combining MASTER, CRITICAL and

BARRIER. (look at barrier.f90)
!$OMP PARALLEL SHARED(L) PRIVATE(nthreads,tnumber)

nthreads = OMP_GET_NUM_THREADS()

tnumber = OMP_GET_THREAD_NUM()

!$OMP MASTER

PRINT *, ' Enter a value for L'

READ(5,*) L

!$OMP END MASTER

!$OMP BARRIER

!$OMP CRITICAL

PRINT *, ' My thread number =',tnumber

PRINT *, ' Value of L =',L

!$OMP END CRITICAL

!$OMP END PARALLEL

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

use of CRITICAL

●	 Look at the following piece of code.

●	 The correct result should be 10+ number of threads.

●	 Without a critical directive it has a problem in that updates to
L are not controlled and a race condition develops.

●	 If you try to fix things by using an atomic directive to control
the actual update to L inside the function, the reading of the
inout argument is still not controlled.

●	 To correct the problem place the subroutine call inside a
critical section.

●	 Look at critical.f90, critical-atomic.f90 and critical-fixed.f90

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Critical trouble

PROGRAM CRITICAL

INTEGER:: L,I

INTEGER:: nthreads, OMP_GET_NUM_THREADS

L=10

!$OMP PARALLEL SHARED(L) PRIVATE(nthreads,I)

!$OMP MASTER

nthreads = OMP_GET_NUM_THREADS()

PRINT *, "Number of threads:",nthreads

!$OMP END MASTER

!$OMP CRITICAL(adder)

CALL ADD_ONE(L)

!$OMP END CRITICAL(adder)

!$OMP END PARALLEL

PRINT *, "The final value of L is", L

END PROGRAM CRITICAL

SUBROUTINE ADD_ONE(I)

IMPLICIT NONE

INTEGER, INTENT(INOUT):: I

INTEGER:: J

J = I

!$OMP MASTER

OPEN(UNIT=26,FORM='FORMATTED',FILE='junk')

DO I=1,40000

WRITE(26,*) "Hi Mom!"

END DO

CLOSE(26)

!$OMP END MASTER

J = J + 1

I = J

END SUBROUTINE ADD_ONE

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

OpenMP Runtime

●	 Library calls:

● omp_set_num_threads, omp_get_num_threads

● omp_get_max_threads, omp_get_num_procs

● omp_get_thread_num

● omp_set_dynamic, omp_get_dynamic

● omp_set_nested, omp_get_nested

● omp_in_parallel

● Environment variables:

● OMP_NUM_THREADS (see NUM_THREADS clause)

● OMP_DYNAMIC

● OMP_NESTED

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Example Programs
● Solution of Helmholtz eqn via Jacobi iterations (look at file jacobi.f)

●	 Four parallel loops:

●	 One for initialization

●	 One for copying the previous state

●	 One for evaluating the pointwise residual, updating the solution and
computing the RMS residual

●	 One for evaluating the error

● Molecular dynamics calculation (look at file md.f)

●	 Two parallel loops:

●	 Force and energy calculations for every particle pair

● Two subroutine/function calls in the lexical extent
●	 Time update of positions, velocities and accelerations

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Jacobi initialization

!$omp parallel do private(xx,yy)
do j = 1,m

do i = 1,n
xx = -1.0 + dx * dble(i-1) ! -1 < x < 1
yy = -1.0 + dy * dble(j-1) ! -1 < y < 1
u(i,j) = 0.0
f(i,j) = -alpha *(1.0-xx*xx)*(1.0-yy*yy)

& - 2.0*(1.0-xx*xx)-2.0*(1.0-yy*yy)
enddo

enddo
!$omp end parallel do

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Jacobi main loop

!$omp do private(resid) reduction(+:error)
do j = 2,m-1

do i = 2,n-1
* Evaluate residual

resid = (ax*(uold(i-1,j) + uold(i+1,j))
& + ay*(uold(i,j-1) + uold(i,j+1))
& + b * uold(i,j) - f(i,j))/b

* Update solution
u(i,j) = uold(i,j) - omega * resid

* Accumulate residual error
error = error + resid*resid

end do
enddo

!$omp enddo nowait

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Jacobi error

!$omp parallel do private(xx,yy,temp) reduction(+:error)
do j = 1,m

do i = 1,n
xx = -1.0d0 + dx * dble(i-1)
yy = -1.0d0 + dy * dble(j-1)
temp = u(i,j) - (1.0-xx*xx)*(1.0-yy*yy)
error = error + temp*temp

enddo

enddo

!$omp end parallel do

error = sqrt(error)/dble(n*m)

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

MD force and energy calculation

!$omp parallel do
!$omp& default(shared)
!$omp& private(i,j,k,rij,d)
!$omp& reduction(+ : pot, kin)

do i=1,np
! compute potential energy
! and forces

f(1:nd,i) = 0.0
do j=1,np

if (i .ne. j) then
call dist(nd,box, &

& pos(1,i),pos(1,j),rij,d)
! attribute half of the potential
! energy to particle 'j'

pot = pot + 0.5*v(d)
do k=1,nd
f(k,i) = f(k,i) - &

& rij(k)*dv(d)/d
enddo

endif
enddo
! compute kinetic energy
kin = kin + &

& dotr8(nd,vel(1,i),vel(1,i))
enddo

!$omp end parallel do
kin = kin*0.5*mass

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

MD pos/vel/acc integration

!$omp parallel do
!$omp& default(shared)
!$omp& private(i,j)

do i = 1,np
do j = 1,nd
pos(j,i) = pos(j,i) + vel(j,i)*dt + 0.5*dt*dt*a(j,i)
vel(j,i) = vel(j,i) + 0.5*dt*(f(j,i)*rmass + a(j,i))
a(j,i) = f(j,i)*rmass

enddo
enddo

!$omp end parallel do

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Parallelizing an existing application

●	 The really nice feature of OpenMP is that it allows for

incremental parallelization of a code. You can start
from the most expensive (time-wise) routine and work
your way down to less important subroutines with a
valid parallel program at any stage in the process.

●	 A few basic steps when starting from scratch:

1)Get a baseline result (some form of output) that you consider
“correct” from your default set of compiler optimization flags.

2)Test for better performance using more aggressive compiler
flags testing for correctness to within some tolerance. Set a new
baseline result based on your final set of flags.

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Preparing for parallelization
3)Profile your code: use the -p/-pg flags and prof/gprof or some

of the more capable tools such as Sun Studio's Performance
Analyzer. Locate the most costly parts of your code.

4)At this point you can opt for either a potentially better
performing and scaling “top-level” whole program
parallelization that tries to address more coarse grained parallel
work or go for the easier solution of the incremental loop level
parallelization.

5)If you choose the former you need to study the algorithm and
try and understand where it offers opportunities for data
parallelism.

6)For the latter do the same analysis at the “hottest” loop level.

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Parallelizing

8) One can try and use the diagnostic information that the

autoparallelizing engines of most compilers emit to aid in faster
identifying the low hanging fruit for the fine level loop
parallelization.

9) Once you have a functional parallel program test first for
correctness vs. the baseline solution and then for speed and scaling
at various processor counts. Debug if necessary.

10)You then proceed to optimize the code by hoisting and fusing
parallel regions so as to get as few as possible, ideally only one for
the whole code through the use of SINGLE & MASTER. Move
code to subroutines with orphaned directives and privatize as
many variables as possible. Iterate with (9).

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

THREADPRIVATE & friends

●	 $OMP THREADPRIVATE(list)

●	 #pragma omp threadprivate(list)

●	 Makes global data private to a thread

●	 Fortran: COMMON blocks, module or save variables
●	 C: File scope and static variables

●	 Different from making them PRIVATE
●	 with PRIVATE global scope is lost
●	 THREADPRIVATE preserves global scope within each thread

●	 Threadprivate variables can be initialized using COPYIN
●	 After a SINGLE construct the value of a threadprivate or private

variable can be broadcast to all threads using the COPYPRIVATE
clause.

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

THREADPRIVATE example

integer iam, nthr

real rnumber

common /identify/ iam, nthr

common /work/ rnumber

!$OMP THREADPRIVATE(/identify/ &

!$OMP& , /work/)

!$OMP PARALLEL

!$ iam = omp_get_thread_num()

!$ nthr = omp_get_num_threads()

!$OMP END PARALLEL

CALL DO_SERIAL_WORK

!OMP PARALLEL COPYIN(work)

print *, iam, nthr, rnumber

call DO_PARALLEL_WORK

!OMP END PARALLEL

subroutine DO_PARALLEL_WORK

integer i, iam, nthr

real rnumber

common /identify/ iam, nthr

common /work/ rnumber

!$OMP THREADPRIVATE(/identify/ &

!$OMP& , /work/)

!$OMP DO

DO i=1,nthr

print *, rnumber, iam

ENDDO

!$OMP END DO

end

Look at threadprivate.f90

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

THREADPRIVATE flow

Parallel Programming for Multicore Machines Using OpenMP and MPI

thread 0

thread 0

thread 0

thread 1 thread M

thread 0 thread 1 thread M

thread 0 thread 1 thread M

c = ?

c = o c = 1 c = M

c = o

c = o

thread 0
a = o

c = 1 c = M

c = o c = o c = o

Shared memory

Shared memory

Shared memory

Shared memory

Shared memory

Shared memory

serial region

serial region

serial region

parallel reg. 1

parallel reg. 2

parallel reg. 3

COPYING

Figure by MIT OpenCourseWare.

mailto:ce107@computer.org

SCHEDULE

●	 The user has finer control over the distribution of loop iterations onto threads

in the DO/for construct:

●	 SCHEDULE(static[,chunk])

●	 Distribute work evenly or in chunk size units

●	 SCHEDULE(dynamic[,chunk])

●	 Distribute work on available threads in chunk sizes.

●	 SCHEDULE(guided[,chunk])

●	 Variation of dynamic starting from large chunks and exponentially
going down to chunk size.

●	 SCHEDULE(runtime)

● The environment variable OMP_SCHEDULE which is one of
static,dynamic, guided or an appropriate pair, say "static,500"

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

STATIC

Parallel Programming for Multicore Machines Using OpenMP and MPI

chunk = 150 chunk = 250 chunk = 300 default

0

0

0

0

1

1

1

12

2

2

0

0

50

100

150

200

250

300

350

400

450

500

550

600

I
t
e
r
a
t
i
o
n

S
p
a
c
e

Figure by MIT OpenCourseWare.

mailto:ce107@computer.org

DYNAMIC

Parallel Programming for Multicore Machines Using OpenMP and MPI

thread 0 thread 1 thread 2

Parallel region

1

1

2

2

3

3

6

6

7

7

8

8

9

9

10

10

11

11

12

12

4

4

5

5

Exceution

Pieces of work

Figure by MIT OpenCourseWare.

mailto:ce107@computer.org

GUIDED

Parallel Programming for Multicore Machines Using OpenMP and MPI

1236789101112 45

Pieces of work

2048 iter.

512 iter.

256 iter.
256 iter.

1024 iter.

Figure by MIT OpenCourseWare.

mailto:ce107@computer.org

ORDERED clause

●	 Enforces sequential order in a part of a parallel loop:

●	 Requires the ordered clause to the DO/for construct

●	 No more than one ordered directive can be executed
per iteration

!$OMP PARALLEL DEFAULT(SHARED) &

!$OMP& PRIVATE(I,J)

!$OMP DO SCHEDULE(DYNAMIC,4) &

!$OMP& ORDERED

DO I=1,N	 Look at ordered.f90
DO J=1,M

Z(I) = Z(I) + X(I,J)*Y(J,I)

END DO

!$OMP ORDERED

IF(I<21) THEN

PRINT *, 'Z(',I,') =',Z(I)

END IF

!$OMP END ORDERED

END DO

!$OMP END DO

!$OMP END PARALLEL

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

FLUSH directive

●	 At the heart of BARRIER, it enforces a consistent
view of memory.

●	 !$OMP FLUSH [(list)]

●	 #pragma omp flush [(list)]

●	 Restrictions on the use of flush in C/C++, same
restrictions applying to barrier.

if (x != 0) if (x != 0)

#pragma omp flush {

#pragma omp flash

}

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

lock API

● omp_init_lock, omp_destroy_lock

● omp_set_lock, omp_unset_lock, omp_test_lock

● omp_init_nest_lock, omp_destroy_nest_lock

● omp_set_nest_lock, omp_unset_nest_lock,
omp_test_nest_lock

timing API
● omp_get_wtime

● omp_get_wtick

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

OpenMP Performance issues
Even when running using only one thread performance can be

lower than the scalar code.
Several performance problems to consider

Parallelization Runtime

● thread management costs ● load imbalance

● ● startup costs synchronization costs
● creation & destruction ● excessive barriers

● small loop overhead ● false sharing
● additional code costs ● processor affinity

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

OpenMP bugs

Race conditions

●	 Different results at different
times due to:

● unprivitized variables

●	 unprotected updates

●	 unfinished updates

real a, tmp

a = 0.0

C$OMP PARALLEL

C$OMP DO REDUCTION(+:a)

do i=1, n

tmp = sin(0.1*i)

a = a + tmp

b(i) = tmp

enddo

C$OMP END DO NOWAIT

print *, b(1)

C$OMP END PARALLEL DO

print *, a

Deadlocks

●	 Not all threads enter a barrier

●	 A thread never releases a lock

●	 Two threads get the same
nested locks in different
succession

Consistency

●	 private variables mask global
variables

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Sequential Equivalence
●	 Using a subset of OpenMP produce parallel code that gives

the same results with the serial code.

●	 Only temporary and loop variables are private

●	 Updates of shared variables are protected

●	 Strong Sequential Equivalence: bitwise identical results

●	 Sequential ordered updates of variables

● Serialization of reduction operations (ordered loops)
●	 Weak Sequential Equivalence: equivalent to within floating

point math nuances

●	 Sequential (critical section) updates

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

OpenMP on Linux platforms
●	 Sun Studio compilers: suncc/CC and sunf77/f90/f95

● -xopenmp, -xopenmp=noopt

● Autoscoping extensions! DEFAULT(__AUTO)

● Free (without support) use

●	 Intel compilers: icc/icpc and ifort

● -openmp -openmp_report[0,1,2]

● Try KMP_SCHEDULE=”static,balanced”

● Can be used with a free personal license.

●	 GNU C/C++ and Fortran version 4.3 (and distro backports)

● -fopenmp

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

OpenMP on Linux

IA32/IA64/AMD64 (commercial)

● Compilers
● Portland Group compilers (PGI) with debugger

● Absoft Fortran compiler

● Pathscale compilers

● Lahey/Fujitsu Fortran compiler

● Debuggers
● Totalview

● Allinea DDT

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Other compilers and tools
● Research compilers ● Tools

● Omni
● OdinMP/OdinMP2
● OMPI
● OpenUH
● Intone
● Nanos Mercurium

● Intel Thread
Checker (free for
personal use)

● Sun Studio Thread
Analyzer (free)

● Sun Studio
Performance
Analyzer (free)

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Cluster/DM Extensions

●	 OpenMP extensions to distributed memory machines

using software shared memory (usually page-based
coherence) or some other mechanism
●	 Intel Cluster OpenMP (commercial enhancement of Rice's

Treadmarks SDSM package)

●	 Omni/SCASH combination

●	 Good for a limited set of problems that exhibit very good
spatial locality (so that fetching a memory page of 4KB
does not result in a lot of wasted traffic). Otherwise the
scalability is very limited – only memory expansion.

●	 Lots of research alternatives

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Summary

●	 OpenMP provides a portable high performance path towards

parallelization - allowing for incremental parallelization and
both coarse and fine grained parallelism targeting moderate
numbers of processors.

●	 Using worksharing constructs one can describe parallelism in
a very compact manner.

●	 Care needs to be taken with the data scope attributes to avoid
bugs as well as performance issues

●	 Programming in a coarse-grained, SPMD format is the key to
high OpenMP performance.

●	 Ideal for automatic load balancing

Parallel Programming for Multicore Machines Using OpenMP and MPI

mailto:ce107@computer.org

Further information

● The OpenMP ARB http://www.openmp.org

● The OpenMP users group http://www.compunity.org

● The Sun compilers
http://developers.sun.com/sunstudio

● OpenMP and the GNU compilers
http://gcc.gnu.org/projects/gomp

● The Intel compilers
http://www.intel.com/software/products/compilers

● A lot more information on the class Stellar website

Parallel Programming for Multicore Machines Using OpenMP and MPI

http://www.openmp.org/
http://www.compunity.org/
http://developers.sun.com/sunstudio
http://gcc.gnu.org/projects/gomp
http://www.intel.com/software/products/compilers
mailto:ce107@computer.org

MIT OpenCourseWare
http://ocw.mit.edu

12.950 Parallel Programming for Multicore Machines Using OpenMP and MPI
IAP 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Outline
	Ack
	Shared Memory
	OpenMP
	concept
	Timeline
	Directives
	Environment
	varP
	Basic Directives
	Conditional
	Extent
	Orphans
	Parallel
	Example
	Clauses
	Examples
	Defaults
	DEFAULT Example
	PRIVATE
	First
	REDUCTION
	Worksharing
	DO/for
	DO/for Clauses
	WORKSHARE
	SECTION
	SECTION Clauses
	MASTER
	NOWAIT
	LASTPRIVATE
	Combo
	Allowed
	Synchro
	BARRIER
	CRITICAL
	ATOMIC
	Synch Examples
	ex CRITICAL
	Slide 47
	Runtime
	Example Programs
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	THREADPRIVATE
	In Action
	Flow
	SCHEDULE
	STATIC
	DYNAMIC
	GUIDED
	ORDERED
	FLUSH
	routines
	Performance
	Bugs
	PSE
	Linux
	Slide 72
	Slide 73
	Slide 74
	Summary
	Further

