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Lecture 8 


Space-time discretization


We have so far analyzed time and space discretizations while respectively 
treating the complimentary dimension as continuous. Now we will consider 
how to discretize both space and time at once. In general, the methods we 
have outlined so far will work in conjunction. For example, in section 2.1, 
the advection equation was discretized using second, fourth and sixth order 
differences. Since the motions are oscillatory we know that we need to use 
a time-stepping scheme that is [conditionally] stable for wave-like motions, 
such as leap-frog, Huen or Runge-Kutta. 

Here, we will analyze particular combinations of space-time discretiza­
tions that yield new properties. 

5.1 Forward in Time, Upwind in Space 

The upwind scheme uses a side-difference in space biased in the upwind 
direction so that for positive flow (c > 0) the scheme is: 

ωi
n+1 n− ωi c n = 0 (5.1)+ ωi

n − ωi−1�t �x 
To find the dispersion relation for the numerical solution we substitute in a 

−(�+i�)t+ikx:wave solution of the form e

1 − e −ik�x e −(�+i�)�t = 1 − C 

where C = c�t is the Courant number. Separating the imaginary and real 
�x 

e 

components gives:

−��t sin ��t = C sin k�x
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−��t e cos ��t = 1 − C + C cos k�x 

Solving for e��t and tan ��t gives: 

C sin k�x 
tan ��t = 

1 − C(1 − cos k�x) 

= 
2C sin k�x 

2 cos k�x 
2 

1 − 2C sin2 k�x 
2 

and 

−2��t 2 e = (1 − C(1 − cos k�x))2 + (C sin k�x)
k�x 

= 1 − 4C(1 − C) sin2 

2 

Since sin2 k�x varies between 0 (for long waves) and 1 (for the grid-scale 
2 

waves) stability depends on the sign of the quantity 4C(1 − C); if either 
C < 0 or C > 1 then 4C(1 − C) < 0 and the solution grows with time. 
Therefore stability is conditional on: 

0 � 4C(1 − C) � 1 

or simply 0 � C � 1. The strongest damping occurs at C = 1/2 which max­
imizes 4C(1 − C). Since C < 0 is unstable, we can infer that the downwind 
difference scheme is unconditionally unstable. 

The waves are dispersive since tan ��t depends on k. If C < 1/2 then 
the frequency is less than k so that the scheme is decelerating and if C > 1/2 
then the frequency is either larger than k or changes sign. C = 1/2 is 
a special point because the denominator becomes 1 − cos2 k�x so that the 

2 
whole expression becomes 2C tan k�x and the frequency is exactly correct. 

2 
The upwind scheme also exhibits a special property of preserving extrema. 

This can be seen by re-arranging the difference equation for the future un­
known value: 

ωi
n+1 n = Cωi−1 + (1 − C)ωn 

i 

nThis is simply a linear interpolation between ωn and ωi with the C being i−1 
n nthe sliding parameter. Hence, ωn+1 must fall on or between ωi−1 and ωi soi 

long as 0 � C � 1. 
We know from section 1.3 that both the forward in time and side difference 

are both of first order accuracy. We also learnt in section 4.2 that the forward 
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Figure 5.1: The frequency of the FTUS (or “upwind”) scheme for various 
Courant number C = �tc . C = 1/2 falls on w = k which is the frequency of 

�x 
the continuum. 

scheme is generally unstable when used for oscillatory motions. It is therefore 
some surprise the scheme is stable at all. One way of looking at why the 
scheme works is to express it as a FTCS (forward in time, centered in space) 
scheme with a specific amount of diffusion: 

⎤	 � 

ωn+1 − ωn ωi
n 
+1 − ωi

n 
−1 |C| ωi

n 
+1 − 2ωi

n + ωi
n 
−1 (5.2)= −C − 

2 C 2 

i |C| 
= −C∂iωn + ∂iiω

n	 (5.3)
2 

In this form, the upwind scheme appears as a space centered derivative but 
with a diffusion term with diffusion coefficient |C| �x2 

that is required and 
2 �t 

sufficient enough to make the scheme stable. 
As a final note, advection schemes are often most useful when written in 

flux form (i.e. as a divergence of a flux). The last form allows us to write 
the scheme: 

ωn+1 − ωn 1 
= − ∂iF 

�t �x 
where F is defined as 

i |c|
F = cωn − ∂iω

n 

2 
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which a general way to write the upwind flux. 

5.2 The Lax-Wendroff Method 

In a similar vain, the Lax-Wendroff method adds diffusion to the FTCS 
scheme: 

ωn+1 − ωn ⎡ ⎣

1 i cC 
= − ∂i cωn − ∂iω

n (5.4)
�t �x 2 

where the diffusion term has an implied diffusion coefficient equal to c2�t/2. 
That is, the last term is an approximation to: 

c2�t 
�xxω 

2 

Although the scheme is written as a forward difference in time, it is in fact 
second order accurate in time and space; the truncation error of the forward 
difference on the LHS is: 

�t �t c2�t 
�tt ω = �t (−c�xω) = �xxω 

2 2 2 

The diffusion term therefore cancels the leading truncation error from the 
forward time difference. This is an example of how treating time and space 
together leads to a substantially different scheme than would be obtained by 
discretizing the dimensions independently. 

An alternative way of accessing the second order nature of the Lax-
Wendroff scheme is to break it down into a two stage scheme: 

ω�n+ 1

2 =

i �t c 

ωn − ∂iω
n (5.5)

2 �x 
�tc 

ωn+1 = ωn − ∂iω
�n+ 1

2 (5.6)
�x 

Here, the time marching looks likes the mid-point second order Runge-Kutta 
method and the mid-point values are staggered in space. 

The dispersion relation for the Lax-Wendroff scheme is: 

k�x2C sin k�x cos 
tan ��t = 2 2 

1 − 2C2 sin2 k�x 
2 
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and amplification: 

k�x 
e −2��t = 1 − 4C2(1 − C2) sin2 

2 

These expressions both take a similar form to those of the FTUS scheme 
except for the second order dependence on C. However, the Lax-Wendroff 
scheme does not conserve extrema like the FTUS method does. 

5.3 Flux limiters 

The FTUS and Lax-Wendroff methods each have their advantages and dis­
advantages; the FTUS is only first order accurate and very diffusive but does 
conserve extrema while the Lax-Wendroff scheme doesn’t conserve extrema 
but is second order accurate. Our objective in this section is to try to blend 
these two schemes, capturing the desired features of each. 

First, we write the system in flux form:


� � 1
1 
ωn+1 − ωn = − (Fi+ 1

2 
− Fi− 1

2 
)i�t i �x 

And now we cast the advective flux, F , as some unknown combination of the 
upwind flux, F U S , and Lax-Wendroff flux, F LW : 

F LW + (1 − �i+ 1

2 
)F U S Fi+ 1

2 
= �i+ 1

2 

1

2 
F U S 

i+ = cωi 

c(1 − C) 
1

2 
F LW 

i+ =
 cωi + (ωi+1 − ωi)
2 

so that the advective flux is: 

c(1 − C)
Fi+ = cωi + �i+1/2 (ωi+1 − ωi)1

2 2 

The factor �i+ is some function, yet to be determined. In some texts, 1

2 

this form of the flux is justified by casting the Lax-Wendroff as above and 
arguing that the second term is a correction to the upwind flux and hence 
adjustable. Substituting into the prognostic equation gives: 

⎤ � 
C(1 − C) C(1 − C) 

i−1) −ωn+1 = ωn 
i i (ωn − ωn 

i (ωn 
i+1 − ωi

n)− C − �i− �i+1

2 
1

22 2 
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ψ(r ) ψ = 2r 

ψ = 2 
2 

1 

r 
1 2 3 

Figure 5.2: The two lines indicate the bounds on the limiter function, 
�(r) given by the constraints for the scheme to be TVD (total variance 
diminishing). 

The last term can be re-written as: 

C(1 − C) C(1 − C) �i+ 1

2(ωn
i ) = i+1 − ωn (ωn − ωn 

i i−1)�i+ 1

22 2 ri+ 1

2 

where ri+ 1

2 
is the slope ratio which is defined as: 

(ωn − ωn 
i i−1) ri+ 1

2 
= 

(ωn 
i+1 − ωi

n) 

Now we will re-write the prognostic equation using the last expression: 
� ⎦ 

(1 − C) (1 − C) �i+ 1

2ωn+1 = ωn 
i i − C �1 − (ωn − ωn 

i i−1)�i− +
1

22 2 ri+ 1

2 

which looks likes an FTUS (upwind) scheme but with a modified Courant 
number. The upwind scheme is both monotone and stable if the “effective” 
Courant number is both non-negative and less than one: 

� ⎦ 
(1 − C) (1 − C) �i+ 1

20 � C �1 − �i− � 1+1

22 2 ri+ 1

2 
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Figure 5.3: The two lines indicate the special limiter functions, �(r) = 1, 
which yields the Lax-Wendroff flux, and �(r) = r which yields the Warming 
and Beam flux. Since both these schemes are of second order, any linear 
combination of these schemes is also of second order. The shaded region 
between them is thus the space where �(r) will yield a second order scheme. 

or 
−2 � 21

2 i+ 
− �i− 1 � 

1 − C C21

2 
ri+ 

Since C � 0 then the above is satisfied if the following stronger constraint is 
satisfied: 

� � 
1

2 i+ 
− �i− 1 � � 2 

21

2 
� ri+ 

Now we will allow the “limiter function” � be a function of the slope ratio: 

� = �(r) 

If r < 0, the slope must have changed sign and indicates a local extrema. 
In this instance we should limit the advective flux to take the form of the 
upwind flux since it is the only (linear) scheme capable of conserving extrema. 
Therefore, for r < 0 we set �(r) = 0. 

If r > 0, the above inequality is satisfied when 

�(r)
0 � � 2 and 0 � �(r) � 2 

r 
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Figure 5.4: The shaded region is the intersection between the TVD region 
and region of second order accuracy. The short dashed line is the Superbee 
limiter, the long dash line is the minmod limiter and the solid curve is the 
Van Leer limiter. 

and we must find functions that meet these criteria if the new scheme is to 
conserve extrema. The limits on �(r) are indicated by the shaded region in 
Fig. 5.2. This region is said to be TVD (total variance diminishing) which 
means that the norm of gradients of a field can not be increased by the 
scheme. It happens that the FTUS scheme is TVD. Although we haven’t 
directly use the TVD definition or cast the constraints as associated with 
TVD behaviour we have nevertheless derived constraints on a non-linear flux 
limiter that will make it TVD. 

A further constraint on the limiter function is the preferred order of accu­
racy of the resulting scheme. We don’t show the proof here but if the scheme 
can be shown to be an interpolation of the Lax-Wendroff method (�(r) = 1) 
and Warming and Beam method (which corresponds to �(r) = r) then the 
scheme will be of second order accuracy. �(r) must therefore fall in the region 
indicated in Fig. 5.3 to be second order accurate. Finally, if �(r) is chosen 
to fall in the intersection of these two regions, second order and TVD, then 
the resulting scheme will be both TVD and second order accurate. 

There are many possible limiters but the most widely used are: 

• Superbee: �(r) = max(0,min(1, 2r),min(2, r)) due to Roe, 1985, 

• minmod: �(r) = max(0,min(1, r)) due to who?, 
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r+|r|• Van Leer: �(r) = 
1+|r| due to Van Leer, 1974. 

each of which is shown in Fig. 5.4. 
A comparison of many different advection schemes is illustrated in Figs. 5.5 

and 5.6. We have grouped the schemes in the following way: a) linear 
schemes with upwind bias (odd order), b) linear space centered schemes, c) 
second-order flux limited schemes (as discussed above) and d) higher order 
flux limited schemes. The reason for the grouping is the common behaviour 
within each group. The upwind biased schemes are smoother than the space-
centered schemes. All the linear schemes, except for the upwind scheme, have 
false extrema. The flux limited schemes are monotone. The second order flux 
limited schemes tend to have reduced amplitude of extrema due to diffusion. 
The higher order flux limited methods can correct this. 

5.4 Modified equations 

In section 5.2 we implicitly made use of a “modified equation”. Modified 
equations provide a way of anticipating the behaviour of a numerical method 
by examing terms implied by a particular approximation. For a given differ­
ence equation, the corresponding modified equation is a continuous equation 
for which the same difference equation is a higher order approximation! For 
example, the difference equation 

1
(ωn+1 c 

− ωi
n) + (ωn − ωi

n 
−1) = 0 (5.7)

�t i �x i 

is the F.T.U.S. scheme (same as equation 5.1), which is a first order approx­
imation in time and space to 

�tω + c�xω = 0. 

However, it is also a second order in time and space to the continuous equa­
tion 

�t c�x 
�tω + �tt ω + c�xω − �xxω = 0. (5.8)

2 2 
This is because the O(�t) truncation term arising from 

1 �t �t2 

(ωn+1 − ωi
n) = �tω + �ttt ω + . . . 

�t i 2! 
�ttω + 

3! 
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exactly matches the second term in (5.8) leaving the O(�t2) as the time-
truncation error. Similarly, the O(�x) truncation term arising from the side 
difference 

�x �x2 

(ωn − ωi
n 
−1) = c�xω − c �xxxω − . . . 

�x i 2! 
�xxω + c 

3! 

exactly matches the last term in (5.8). 
We can eliminate the second order time derivative from (5.8) by differ­

entiating the governing equation:�tt ω = c2�xx. Thus, the first order approxi­
mation to the advection equation (5.7) is also a second order approximation 
to the modified equation 

c�x c�t 
�t ω + c�xω − (1 − )�xxω = 0. 

2 �x 

This allows us to interpret the F.T.U.S. scheme; the modified equation dif­
feres from the governing equation by a diffusive term with diffusivity 

c�x c�t 
(1 − ). 

2 �x 

This effective diffusivity is propotional to the flow c, it decreases with de­
creasing �x (i.e. higher resolution is less diffusive) and also decreases with 
the Courant number c�t/�x. This is consistent with the special case of 
c�t/�x = 1 for which the F.T.U.S. scheme gives the exact answer. 

Now we’ll take the approach a step further and derive a third order mod­
ified equation. To get there we will use the following relations which are 
simply repeated differentiations of the second-order modified equation (5.8): 

c�x 
�xtω = −c�xxω + (1 − C)�xxxω 

2

c�x


�xxtω = −c�xxxω + (1 − C)�xxxxω = −c�xxxω + O(�x)
2


c�x

�ttω = −c�xt ω + (1 − C)�xxtω 

2 
⎡ ⎣ 

c�x c�x 
= −c −c�xxω + (1 − C)�xxxω + (1 − C) (−c�xxxω) + O(�x 2)

2 2 
2= c 2�xxω − c 2�x(1 − C)�xxxω + O(�x ) 

�xttω = −c�xxtω + O(�x) = c 2�xxx + O(�x) 

�ttt ω = −c�xtt ω + O(�x) = −c 3�xxx + O(�x) 
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where C = c�t .
�x 

Now we substitute in for the first and second order Taylor series terms in 
the F.T.U.S scheme: 

c1
(ωn+1 

�t i − ωi
n) + (ωn − ωi

n 
−1)�x i 

�x2�t �x �t2 

= �tω + c�xω + �ttω − c �xxω + �ttt ω + c �xxxω + . . . 
2! 2! 3! 3! 
c�x c�x2 

= �tω + c�xω − (1 − C)�xxω + (1 − C)(1 − 2C)�xxxω (5.9)
2 6 

keeping only O(�x2) terms. This is the modified equation to which (5.7) 
is an O(�x3) approximation. The second term is diffusive as we saw before 
with the second order modified equation. The last term in (5.9) causes waves 
to be dispersive (it leads to a −ik3 term in the dispersion relation). 
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Time = 1 CFL = 0.05 Num. pnts.=100 
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Figure 5.5: Solution obtained with a small Courant number. The analytic 
solution is the thick solid line in each panel. The upwind scheme does not 
exhibit false extrema but is clearly very diffusive. The third order upwind 
is much better at preserving the shapes. The even order methods (second 
panel) have multiple false extrema but the Lax-Wendroff method is at least 
smoother. The third panel shows the second order limited solutions, all 
of which conserve extrema. The fourth panel shows some third order flux 
limited solutions which preserve amplitude better. 
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Time = 1 CFL = 0.24 Num. pnts.=100 
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Figure 5.6: Solution obtained with a large Courant number. As for Fig. 5.5 
but notice that the noise levels in the unlimited schemes is worse. 


