
Lecture 3


Series Expansion Methods


Series expansion methods are the general class that encompass spectral and 
finite element methods. We approximate functions as a linear combination 
of prescribed expansion functions - we call these basis functions. For a con­
tinuous function f(x), we write 

N 
⎤ 

f(x) = aj �j (x) (3.1) 
j=1 

where �j , j = 1, . . . , N , are the basis functions that each satisfy any boundary 
conditions on f(x). The coefficients aj are the unknowns and form a vector 
of N numbers. 

Suppose that we have a partial differential equation of the arbitrary form 

L (f) = �(x). (3.2) 

We define the residual of equation (3.2) as 
⎪ ⎜ 

N 
⎤ 

r(x) = L (f) − �(x) = L ⎛ aj �j (x)⎞ − �(x). (3.3) 
j=1 

a

If L is linear and the basis functions, �j (x) are the eigen-functions of L, then 
the residual can be set to zero for the whole domain and the resulting N 
algebraic equations can be solved for aj . Generally speaking, L is non-linear 
so we will describe more general approaches for solving for the coefficients 

j . 

28 
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We will consider three strategies: i) minimization of the of l2-norm of the 
residual, 

⎨ 

(||r(x)||2)
2 = r(x)2dx, (3.4) 

ii) the collocation method where we set the residual to zero at a discrete set 
of positions xk (e.g. on a regular grid xk = k�x), 

r(xk ) = 0 � k = 1, . . . , N (3.5) 

and iii) the Galerkin method which requires the residual to be orthogonal to 
each of the basis functions, 

⎨ 

�k r(x)dx = 0 � k = 1, . . . , N (3.6) 

The collocation method is used in the pseudo-spectral method while the 
Galerkin method is used extensively in the finite element method. The spec­
tral method is a special case where the l2-norm and Galerkin method become 
equivalent. 

There are many variants on these methods and we will discuss one, the 
Petrov-Galerkin method. Here, the residual is made orthogonal to a set of 
test functions, νk (x), which may be different to the basis set, �k(x): 

⎨ 

νk r(x)dx = 0 � k = 1, . . . , N. (3.7) 

The Petrov-Galerkin method is more general than the Galerkin method be­
cause if we chose νk (x) = �k (x) we recover equation (3.6). 

3.1 The Spectral Method 

Spectral methods are a special case of the series expansion method; the basis 
functions form an orthogonal set: 

⎨ 

�i�j dx = 0 � i �= j. 

The ability to use an orthogonal basis set is largely dictated by the domain 
geometry and boundary conditions. For example, it is natural to use spherical 
harmonics in spectral atmospheric models but difficult to model irregular 
coasts with the same representation. 
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3.1.1	 Spectral method compared to the finite differ­

ence method 

In lecture 2 we analyzed the numerical dispersion of waves using the finite 
difference method applied to the linear advection problem 

�tν + c�xν = 0 

in which c was constant. Consider using a Fourier series expansion to repre­
sent ν(x, t): 

N 
⎤ 

ak (t)e 
ikx ν(x, t) = 

k=−N 

We’re implicitly assuming a periodic domain −∂ � ∂. Note, in this case, 
ν(x, t) is real so the coefficients in the series satisfy the property ak = �a−k 

where ak	 is the complex conjugate of ak . 
Direct substitution of each component of the series, ak (t)e

ikx , into the 
governing equation yields 

�t ak + ickak = 0 � k 

which is unusually trivial to solve. The corresponding dispersion relation 
shows us that all waves, including the shortest, propagate with the exact 
correct phase speed. 

Note, we did not use any of the methods listed in section 3. Let us apply 
the Galerkin approximation (equation 3.6) to see what happens. Note that 
two complex functions, g(x) and h(h), are orthogonal is the integral over the 
domain, S, of the product of one with the complex conjugate of the other is 
zero: ⎨ 

g(x)h�(x) dx = 0 
S 

For this problem, the Galerkin approximation is 
⎭	 ⎣ 

⎨ � N	 N 
⎤ 

e −ijx 
⎡�t 

⎤ 
ak (t)e 

ikx + c�x ak (t)e 
ikx 

� dx = 0 � j = −N, . . . , N 
−� k=−n	 k=−n 

(3.8) 
and we need to evaluate the following integral: 

⎟ ⎩ 
i(k−j)x 

�� 
� e = 0 j ��	 = k

⎨ �	 ⎠ k−j −�−ijx e ikx dx =e 
⎧ 2∂	 j = k 

−�	 � 
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Thus the Galerkin approximation yields 

2∂�tak + 2ic∂kak = 0 

which is exactly the same results has obtained by direct substitution. 
The spectral approximation does not introduce phase speed or amplitude 

errors, ignoring time-discretization errors. 

3.1.2 Spectral Stommel model in 1-D 

This is a somewhat contrived use of the spectral method but allows us to 
make a direct comparison with finite difference method used in section 1.5. 

To re-state the problem, we seek solutions to the differential equation: 

π�xxρ + �xρ = −1 

with boundary conditions ρ(0, 1) = 0. 
We will express the solution, ρ(x), in terms of a sin-series: 

N 
⎤ 

ρ(x) = aj sin (j∂x) (3.9) 
j=1 

since the functions sin (j∂x) all satisfy the boundary conditions. The residual 
of the governing equation is 

N N 
⎤ ⎤ 

r(x) = π aj �xx sin (j∂x) + aj �x sin (j∂x) + 1 
j=1 j=1 

N N 
⎤ 

= −π∂2 
⎤ 

aj j
2 sin (j∂x) + ∂ aj j cos (j∂x) + 1 (3.10) 

j=1 j=1 

Using the Galerkin method (3.6) we require the residual to be orthogonal to 
the basis functions: 

⎟ 
⎨ 1 ⎨ 1 ⎠ N 

r(x) sin (k∂x) dx = −π∂2 
⎤ 

aj j
2 sin (k∂x) sin (j∂x) 

0 0 ⎧ 
j=1 

� 
N 

⎦ 
⎤ 

+∂ aj j sin (k∂x) cos (j∂x) + sin (k∂x) dx 
⎫ 

j=1 

= 0 � k = 1, . . . , N (3.11) 
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Once we evaluate the integrals and sums it will become apparent that (3.11) 
represents a set of N algebraic equations in the unknowns, ak. 

The first term in (3.11) involves the expression 

a
⎨ 1 

⎤ N ⎨ 1 

j j
2 sin (k∂x) sin (j∂x) dx = 

⎤ 
aj j

2 sin (k∂x) sin (j∂x) dx. 
0 j=1 j=1 0 

N 

Evaluating the integral inside the sum we get 
⎟ 

1 
⎨ 1 � j = k 

⎠ 2 
sin (k∂x) sin (j∂x) dx = 

0 ⎧ 0 j �= k 

which reflects the orthogonality of the basis set. Evaluating the sum over j, 
the first term in (3.11) becomes 

N ⎨ 1 −π∂2 

−π∂2 
⎤ 

aj j
2 sin (k∂x) sin (j∂x) dx = akk

2 . 
j=1 0 2 

The last term is similarly straight forward: 
⎨ 1 −1 1 1 − cos (k∂) 1 − (−1)k 

sin (k∂x) dx = [cos (k∂x)] = = 
0 k∂ 0 k∂ k∂ 

which is 2/k∂ when k is odd and is zero when k is even. The beta term is 
more complicated; the inner integral evaluates to 

⎨ 1 k − k(−1)(j+k) 

sin (k∂x) cos (j∂x) dx = . 
0 ∂(k2 − j2) 

When j + k is even, which includes j = k, the numerator and integral is zero. 
When j + k is odd the expression becomes 2k/∂(k2 − j2). 

Substituting all these results back into 3.11 we obtain 
N−π∂2k2 

⎤ jk(1 − (−1)(j+k)) (−1)k − 1 
ak + aj 

k2 − j2 
= � k = 1, . . . , N (3.12)

2 k∂ 
j=1 

which represents N algebraic equations for the unknowns ak. We pose this 
as a linear algebra problem of the form Aa = b where 

a
⎪ ⎜ ⎪ 2 ⎜ 

1 � 
⎬ . ⎝ ⎬ . ⎝ 
⎬ . ⎝ ⎬ . 

⎝ 
⎬ . 

⎝ ⎬ . 
⎝ 

a = ⎬ ⎝ , b = ⎬ (−1)k −1 ⎝ 
⎬ ak ⎝ ⎬ ⎝ 
⎛ ⎞ ⎛ k� ⎞ 

. .. .. . 
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and A whose elements are given by 

A
π∂2k2 jk(1 − (−1)(j+k)) 

jk = ψij + 
k2 − j22 

where the symbol ψij is the Kronecka function; ψij = 1 � i = j and ψij = 
0 � i �= j. This is a “full” matrix meaning it is not sparse; many elements 
are non-zero. Recall that the matrix problem corresponding to the second 
order finite difference Stommel model was a tri-diagonal matrix which is a 
lot easier to invert. The basis functions and solution using N = 6 are plotted 
in Fig. 3.1 and examples of higher truncations given in Fig. 3.2. The error 
for a range of truncations is plotted as a function of N in Fig. 3.3. Note that 
the slope of the error curves seems to steepen downward as N increases - this 
is a strong motivation for using the property of spectral methods; they have 
incredible convergence properties. 
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Figure 3.1: Top: The basis functions used in the spectral method solution of 
the Stommel model (N=6). Middle: the components of the solution due to 
each basis function, aj �j (x). Bottom: the numerical solution and analytical 
solution. 
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Figure 3.2: Spectral solutions to the Stommel problem using different length

Fourier series, N = 6, 12, 20, 40, 60, 100, 200, 400.
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Figure 3.3: Convergence of the spectral method. The error, measured by the 
l1, l2 and l� norms, is plotted as a function of N . Note the increasing rate 
of convergence as N is increased. 
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Figure 3.4: a) The chapeau function and b) the top hat function 

3.2 Finite elements using Chapeau functions 

As an example, consider the problem of constant advection in one-dimension: 

�tu + c�xu + φ�xxu = 0 

We’ll describe the dependent variable, u, using the chapeau basis functions: 

�
0 � |x − xj | > �x 

j (x) = 
1 − |x−xj | � |x − xj | � �x 

(3.13) 
�x 

which is plotted in Fig. 3.4a. Using the Galerkin approximation (3.6), we 
have: 

N ⎨ � 
⎤ 

�i (�tuj �j + cuj �x�j − φuj �xx�j ) dx = 0 � i = 1, . . . , N (3.14) 
j=1 −� 

In this expression we see products of basis functions and derivatives of basis 
functions. We can evaluate the integrals of these expressions: 

⎨ � 4 
�i�idx = �x 

−� 6 
⎨ � 1 

�i�i±1dx = �x 
−� 6 

⎨ � 
�i�x�idx = 0 

−� 
⎨ � 1 

�i�x�i±1dx = ± 
−� 2 
⎨ � −2 

�i�xx�idx = 
−� �x 

⎨ � ±1 
�i�xx�i±1dx = 

−� �x 
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Figure 3.5: Dispersion relations for the O(�x2), O(�x4) and O(�x6) fi­
nite difference methods and the O(�x4) finite elements method (using the 
chapeau basis functions). 

where the last two integrals were carried out by parts. Equation 3.14 then 
becomes 
1	 c φ 
(�t ui−1 + 4�tui + �tui+1) + (ui+1 − ui−1) − 

2 
(ui+1 − 2ui + ui−1) = 0 

2�x �x

or, returning the finite difference notation, 
c 
ψiu i − 

φ 
Ax�tu + ψiiu = 0 

�x2 

where the averaging operator, Ax is defined: 

1 1 

�x 

Ax u = u + (ui−1 + 4ui + ui+1)ψiiu = 
6 6 

The finite element method gives fourth order spatial accuracy in this 
problem. For comparison, the second order finite difference approximation is 

c 
ψiu i − 

φ 
ψiiu = 0 �tu + 

�x �x2 
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and the fourth order finite difference approximation: 

i 
c 1 φ 1 

�tu + ψiu − ψiiu − ψii(u − ψiiu) = 0 
�x 6 �x2 12 

which uses a five point stencil. The dispersion relation for the undamped 
waves (φ = 0) in these approximations are plotted in Fig. 3.5. Note that 
although the stencil of the finite elements method is only three points (as 
for the second order finite difference approximation), and that the formal 
truncation is O(�x4), the dispersion relation is far more accurate than even 
the sixth order finite difference approximation. 

Finite element Stommel model 

Note that we can trivially see what the finite element approximation to the 
Stommel problem would be by simply dropping the time-derivative in the 
above problem. The resulting discretization is exactly the same as the second-
order finite difference discretization. 

3.3 Note on Finite Fourier series 

Different texts use different apparent representations of finite Fourier series 
which are in fact equivalent. For a real valued function, �(x), one series 
representation may be written 

N N 
⎤ ⎤ 

�(x) = a0 + ak cos (kx) + bk sin (kx) 
k=1 k=1 

which has 2N + 1 degrees of freedom and where all coefficients are real. This 
representation has the advantage that it is immediately obvious that all terms 
are real. A more succinct series representation is 

N 
⎤ 

�(x) = cke 
ikx 

k=−N 

which also has 2N + 1 coefficients but where the coefficients ck are complex. 
A complex number has two components, real and imaginary, and one may 
wonder if there are in fact 4N + 2 degrees of freedom. If �(x) is real, then 
the coefficients must satisfy a certain constraint as we derive now. 
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R
k + ic
Ik where
 cRk and
 cIk are
Let us write each coefficient ck = c real 

numbers. Then each term in the series is 

ikx = (c Rk + ic
Ik) [cos (kx) + i sin (kx)]
ck e 
⎩ � ⎩ � 

R
k cos (kx) − c
Ik sin (kx) + i
 c
Rk sin (kx) + c
Ik cos (kx)
= c . 

It is then obvious that the sum of contributions from modes k and −k can 
be written in term of cos (kx) and sin (kx) alone: 

⎩ � 
ikx −ikx + c−k e = (c Rk + c
 I 

−k 
R ) cos (kx) + (c−k − c
Ik) sin (kx)ck e 

⎩ � 
R
k + c
 I

k 
R ) sin (kx) + (c−k + c
I ) cos (kx)−k+i (c . 

To ensure that the function has no imaginary component we need to ensure


R
k − c
R 

−k = 0 and
 c Ik + c
I 
−k = 0 c 

or more simply 

a

ck = c−k . 

We can also associate each term in the two forms of Fourier series: 

0 = c0 (which is real) 
R
k + c
R 

−k 
R
k= 2cak = c 

I 
−k 

I
k 

I
k.
bk = c − c = −2c 


