
Lecture 23 


Vertical coordinates


We have exclusively used height as the vertical coordinate but there are alter­
native vertical coordinates in use in ocean models, most notably the terrain-
following coordinate models and isopycnal models. We’ll first transform the 
equations of motion to a general vertical coordinate, r, before considering the 
most common specific vertical coordinates. A good reference for the trans­
formation is the book by Haltiner and Williams, 1980, section 1-9. The book 
by Haidvogel and Beckmann, 1999, describes models using all three vertical 
coordinates. 

10.1 General vertical coordinate 

Consider a general vertical coordinate, r, which is assumed to be a monotonic 
function of height, z. Transforming the equations of motion into the coordi­
nates (x, y, r, t) makes z = z(x, y, r, t) a dependent variable. Any dependent 
variable, A = A(x, y, z, t), that can be described in the original coordinate 
can be described as a function of the new coordinates: 

A = A(x, y, z(x, y, r, t), t) 

The vertical partial derivative in the new coordinate is 

ρA ρz ρA 
= 

ρr ρr ρz 

or equivalently 
ρA ρr ρA 

= 
ρz ρz ρr 
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A partial derivative with respect to any other ordinate, s, where s is one of 
x, y or t, is obtained using the chain rule: 

ρA � ρA � ρA ρz 
ρs � ρs � ρz ρs � 

r z r 

or, substituting in for ρz A from above, 

ρA � ρA � ρA ρr ρA 
ρs � ρs � ρr ρz ρr � 

r z r 

Here, the vertical bar with suffix indicates the partial derivative holding 
constant the suffix. We can now write down the horizontal gradient of a scalar 
A in height coordinates expressed in terms of derivatives in r coordinates: 

ρA ρr 
�z A = �r A − �r z 

ρr ρz 

Similarly, the horizontal divergence of a horizontal vector, κv can be expressed: 

ρκv ρr 
�z · κv = �r · κv − · �r z 

ρr ρz 

The vertical velocity in height coordinates, w, can be expressed: 
� � � 

ρz � ρz � ρz � ρz 
w = Dtz = � 

� + � 
� Dtx + � 

� Dty + Dtr 
ρt � ρx � ρy � ρr 

r r r 
� 

ρz � ρz 
� 

+ κv · �r z + ˙= � r 
ρt � ρr 

r 

Finally, the total derivative of A in z coordinates is the total derivative in r 
coordinates: 

ρA � ρA 
DtA = � + κv · �z A + w 

ρt � ρz 
z 

ρA � ρz � ρr ρA 
= � + κv · �r A + w − � − κv · �r z 

ρt � ρt � ρz ρr 
r r 

ρA � ρA 
= � + κv · �r A + ṙ 

ρt � ρr 
r 
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Now we can use the above relations to transform the terms in the equa­
tions of motion. Hydrostatic balance becomes 

ρr ρp 
= −g� 

ρz ρr 

or more naturally 
ρp ρgz 

= −� 
ρr ρr 

The horizontal pressure gradient in the momentum equations becomes 

ρp 
�z p = �r p − �r z 

ρz 
= �r p + ��r gz 

where gz is the geopotential. 
The incompressible continuity (or non-divergence) equation is: 

ρr ρr ρκv 
�z · κv + ρz w = �r · κv + ρr w − · �r z = 0 

ρz ρz ρr 

The term ρr w can be found from the definition of w = Dtz above: 

ρw ρ ρz � ρz

= � + κv · �r z + ṙ 

ρr ρr ρt � ρr 
r 

ρ � ρ ρκv ρṙ ρz 
= � (ρr z) + κv · �r (ρr z) + ṙ (ρr z) + · �r z + 

ρt � ρr ρr ρr ρr 
r 

ρκv ρṙ ρz 
= Dt(ρr z) + · �r z + 

ρr ρr ρr 

so that continuity in r coordinates is 

ρz ρz ρṙ
Dt + �r · κv + = 0 

ρr ρr ρr 

This can be written equivalently as 

ρz ρṙ
Dt ln + �r · κv + = 0 

ρr ρr 

or 
ρz ρz ρ ρz 

ρt + �r · κv + ṙ = 0 
ρr ρr ρr ρr 
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Combining all the above relations, the inviscid and adiabatic HPEs can then 
be written in r coordinates as: 

Dtκv + f k̂ � κv + 
1 
�̄ 
�r p + 

1 
�̄ 
��r gz = 0 

ρp 
ρr 

+ � 
ρ 
ρr 

gz = 0 

 � 

ρz ρz ρ ṙ 
Dt 

ρr 
+ 

ρr 
�r · κv + 

ρr 
= 0 

� = �(ω, S, z) 

Dtω = 0 

Dts = 0 

We’ll now chose specific vertical coordinates and see how the above equa­
tions simplify or otherwise turn out in each case. 

10.2 Terrain following coordinates 

The representation of bottom topography in z-coordinates has historically 
been crude1 . An elegant approach to incorporate the topography smoothly 
into models is to normalize the vertical coordinate by the fluid depth. There 
are many choices of terrain following coordinate but we will demonstrate the 
simplest, known as �-coordinates (sigma) where 

z 
H(x, y) 

This maps the bottom at z = −H(x, y) to � = −1 and so the domain is 
made square. Using r = � = z/H simplifies the scaling factor 

ρr 1 ρz 
= or = H 

ρz H ρr 

In the hydrostatic equation, the vertical derivative of gz is trivial since z = 
rH = �H. The resulting �-coordinate equations are: 

Dtκv + fˆ 1 1 ρp 
k � κv + �� p − 

¯
�� z = 0 

�̄ �H ρ� 

1The finite volume method (or partial cell representation) has somewhat alleviated this 
problem. However, there are still advantages to terrain-following coordinates such as fixed 
domain, the ability to use a modal representation in the vertical, etc... 
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Figure 10.1: Schematic of sigma-coordinates (a) and s-coordinates (b) in 
physical x − z plane. 

ρp 
ρ� 

+ �gH = 0 

ρ 
�� · Hκv + 

ρ� 
H �̇ = 0 

There are two gradient terms in the momentum equations. To a large 
degree, these cancel but cannot necessarily be canceled analytically. To see 
this, imagine a resting fluid of constant density. The pressure is simply a 
function of height, z. However, wherever the topography, H, slopes, the 
coordinate surfaces above must slope too. This means that �� p is non-zero 
and indeed is canceled by g��� z. At a numerical level, it is impossible to 
make these two terms balance exactly for an arbitrary static initial condition 
and so leads to “spontaneous” motion. The imbalance of terms is known as 
the “pressure gradient error” and a lot of effort has been put into reducing 
this error. With modern schemes, a typical error will be of the order of 
millimeters per second for common circumstances. 

Over shallow topography, the effective vertical resolution is increased. 
This can be an advantage but care must be taken to avoid numerical insta­
bility due to small grid lengths (CFL). The implicit treatment of vertical 
terms is therefore used in models such as SPEM/SCRUM or SEOM. 

There are many variants on the terrain following coordinates where dif­
ferent functions of bottom depth and height are used. Some also include the 
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free-surface height in the normalization; the s-coordinate is defined as 

z − � 
s = 

H + � 

so that all though the free-surface can move the computational domain is 
fixed (−1 � s � 0). The surface variations introduce relatively minor slopes 
to the coordinate surfaces compared to those induced by the bottom topog­
raphy. 

Terrain following coordinates have several advantages over z-coordinate 
models: 

•	 Smooth representation of bottom topography. 

•	 Allow concentration of coordinate lines in “boundary layers”. 

but have the following dis-advantages: 

•	 Pressure gradient error can be significant and/or lead to spontaneous 
motion. 

•	 Representation of horizontal or along isopycnal processes is awkward. 

10.3 Isopycnal coordinates 

Where the fluid is adiabatic, (potential) density is conserved and since, under 
statically stable conditions, density is a monotonic function of height it makes 
a useful vertical coordinate. The real advantage of isopycnal coordinates is 
their Lagrangian treatment of vertical motion; explicit advection acts only 
in the horizontal. This makes the models models very adiabatic allowing 
them to avoid numerical diffusion in the vertical that can be troublesome in 
z-coordinate and terrain-following coordinate models. 

Strictly speaking, the vertical coordinate is potential density, �ρ but we 
will use � as the vertical coordinate to avoid confusion with the terrain fol­
lowing coordinate. Setting r = �, the continuity equation becomes: 

ρ 
ρtρ�z + �r · ρ�zκv + ρ�z�̇ = 0 

ρ� 
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where �̇ is non-zero only where diabatic terms force flow across isopycnals. 
The continuity equation has become a layer thickness equation for each den­
sity class. The hydrostatic equation is 

ρp ρ ρp ρ 
ρ� ρ� ρ� ρ�

+ � gz = + �gz − gz 

ρ 
= �M − gz = 0 

ρ� 

where M = p/�+gz is the Montgomery potential. The momentum equations 
become 

Dtκv + f ̂
1 

k � κv + ���M = 0 

Isopycnal models have several advantages over the height and terrain-following 
coordinates: 

•	 Ideal for modeling lateral transfer processes. Adiabatic motions mod­
eled without any spurious diabatic terms. 

•	 Smooth representation of topography. The bottom topography is rep­
resented as piecewise-linear and is included in the model through a 
vanishing of the layer thickness. 

•	 Conserves volume of density classes 

Some dis-advantages are: 

•	 Full or non-linear equation of state is difficult. 

•	 Non-hydrostatic effects/dynamics are not possible. 

•	 Density is not a natural coordinate for representing mixing processes 
such as the surface BBL (shallow and deep mixed layers). 

•	 Vertical and horizontal resolution are tightly connected in regions where 
isopycnals outcrop. This can lead to inadequate horizontal resolution 
in regions such as the ACC. 
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Figure 10.2: A schematic of (a) “step” topography in a z-coordinate model 
and (b) a partial cell representation. 

10.4 z-coordinate models 

Note that the z-coordinate equations are readily recovered. Setting r = z 
means that ρr z = 1, Dtρr z = 0, �r gz = 0 and ρr gz = g. Since we are so 
familiar with z-coordinates we will refrain from writing them out once more. 

One of the problems with z-coordinates used to be with the crude rep­
resentation of topography as a series of giant steps (see Fig. 10.2). Now, 
however, we represent the bottom either via a variable thickness bottom 
layer (partial cells) or with a piecewise-linear representation. This approach 
has been tested and favourably compared to results from a sigma-coordinate 
model. The three main z-coordinate models have some form of partial cells 
implemented. 

Some advantages of using z-coordinates are: 

• Simple to implement and use! 

• The full equation of state can be used. 

• Diabatic processes, including the mixed-layer, can be represented easily. 

• Non-hydrostatic and non-Boussinesq terms can be included.


Some dis-advantages are:


• Representation of along isopycnal processes are awkward. 

• Representing the bottom boundary layer is awkward. 
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10.5	 Primitive equations in pressure coordi­

nates 

The other natural choice of vertical coordinate is pressure. Here, however, the 
non-Boussinesq equations are the best starting point. This leads to equations 
very similar to those used in meteorology. They have the advantage of not 
needing to “simplify” the equation of state dependence on pressure but have 
a major difficulty in representing the bottom. Use of the Philip’s normalized 
pressure coordinate (a sigma-coordinate) renders equations very similar to 
the terrain-following coordinate outlined above. 

The compressible, non-Boussinesq hydrostatic equations in height coor­
dinates are: 

Dtκv + fˆ 1 
k � κv + �z p = 0 

ρp 
+ g� =	 0 

ρz 
1 ρw 
Dt� + �z · κv + = 0 

� ρz 
� = �(ω, S, p) 

Dtω = 0 

Dts = 0 

Using the same transformation rules as before, the non-Boussinesq equations 
written in a general coordinate “r” become: 

Dtκv + f k̂ � κv + 
1 
� 
�r p + �r gz = 0 

ρp 
ρr 

+ � 
ρ 
ρr 

gz = 0 

 � 

ρz ρz 1 ρ ̇r 
Dt 

ρr 
+ 

ρr � 
Dt� + �r · κv + 

ρr 
= 0 

� = �(ω, S, p) 

Dtω = 0 

Dts = 0 

The continuity equation looks unusual. having two total derivatives. A

judicious choice of coordinates, r = p, will cause these terms to cancel. With
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r = p, the hydrostaic equation becomes 

ρz 
1 + �g = 0 

ρp 

which is normally written 
ρ� 

∂ + = 0 
ρp 

where ∂ = 1/� is the specific volume and � = gz is the geopotential. We 
can now examine the two total derivatives in the continuity equation: 

ρz ρz 1 1 1 
Dt + Dt� = −Dt ( ) − Dt� 

ρp ρp � g� g�2 

1 1 
= Dt� − Dt� = 0 

g�2 g�2 

The other major simplification is that the gradient of pressure on a pressure 
surface is zero (�pp = 0) so that the momentum equation retains only one 
gradient term. 

Making the above substitutions we arrive at the primitive equations in 
pressure coordinates: 

k � κv + �p� = 0 
ρ� 

Dtκv + fˆ

∂ + = 0 
ρp 
ρσ 

�p · κv + = 0 
ρp 
∂ = ∂(ω, S, p) 

Dtω = 0 

Dts = 0 

where σ = ṗ is the cross coordinate flow in pressure corodinates. The equa­
tion of state is now written in terms of specific volume. 

Examination of the above equations and comparison with the Boussinesq, 
hydrostaic equations in height coordinates reveals a one-to-one correspon­
dance of terms and variables; the equations are isomorphic. They take the 
same structural form and this carries through to the boundary conditions also 
(de Szoeke and Samelson, 2002; Marshall et al., MWR 2004). Because the 
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equations are isomorphic, all of the algorithmic considerations and coordi­
nate transformations we discussed can be applied to the primitive equations 
in pressure coordinates. This is an approach used in the MIT GCM to model 
the atmosphere or non-Boussinesq ocean using the same code that is used to 
model the Boussinesq ocean. 

10.5.1 Atmosphereic equations in pressure coordinates 

For the atmosphere, we simply need to replace the equation of state with 
that of the atmosphere (we’ll use the ideal gas equation, p = �RT ) and drop 
salinity from the equations. There is one simplifying step that can be made 
due to the ideal gas equation which uses a function called the Exner function, 

p 
p

� = cp 
o 

Here, cp is the specific heat at constant pressure, R is the gas constant and 
η = R/cp and po is a reference pressure used to define the potential temper­
aute: 


 � 
−� 

cpT p
ω = = T 

� po 

Note that 
cpη p η 

ρp� = = � 
p po p 

and 
RT ηcpT η�ω 

∂ = = = = ωρp� 
p p p 

so that the primitive equations for an ideal dry atmosphere can be written: 

k � κv + �p� = 0 
ρ� 

Dtκv + f ̂

ω + = 0 
ρ� 
ρσ 

�p · κv + = 0 
ρp 

Dtω = 0 

Integrating the continuity equation vertically over the air column and apply­
ing appropriate boundary conditions yields the surface pressure equation 

ρt ps + � · psκv = 0 
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10.6 Hybrid coordinates 

The choice of vertical coordinate is perhaps the single most important fea­
ture that differentiates between models and is still an active area of research. 
Many groups are examining how to use “hybrid” coordinates where the coor­
dinate may be a function of height in the mixed layer, a function of isentropes 
in the interior and some function of the terrain in the bottom boundary layer. 


