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1 Introduction
The starting point for theoretical and numerical study of the three dimen-
sional large-scale circulation of the atmosphere and ocean is a vorticity equa-
tion that has a form very similar to that employed in the study of 2-d in-
compressible ‡ow [see eqs.(6) and (7) of section 2.1 of ‘vorticity equation’
notes] except that the vorticity variable - which goes under the name of the
‘quasi-geostrophic potential vorticity’ - is a three-dimensional Laplacian of a
streamfunction, rather than a two-dimensional Laplacian.
In this chapter we outline the assumptions underlying the quasi–geostrophic

equations and describe how they can be integrated forward numerically to
study the circulation of the ocean. These numerical studies played a semi-
nal role in the development of baroclinic theories of the wind-driven ocean
circulation.

2 The quasi-geostrophic equations
Underpinning the quasi-geostrophic equations are two key assumptions:

1. The absolute vorticity of a column of ‡uid is modi…ed chie‡y by vertical
stretching or compression.

!

!"
(# + [$%&' v]!) = #

()

(*
(1)

where # is the Coriolis parameter (for now assumed constant), ) is
the vertical velocity and * is a vertical coordinate. By comparison,
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it is assumed that the change in vorticity due to tilting of the Taylor
columns by the thermal wind is small. Note that in eq(1) it has been
assumed that the vertical component of [$%&' v]! is small compared to
# when multiplying the stretching term,"#

"!
: i.e. the Rossby number is

small

+$ =
,

#-
.. 1

1. where , is the speed of a typical horizontal current which varies over
a horizontal scale -.

2. We suppose that the ‡ow is nearly geostrophic. One can use the
geostrophic relation to compute [$%&' v]! thus:

[$%&' v]! =
(/%
(0

¡ (%%
(1

where the geostrophic winds are given by

#/% ¡ 1
2

(3

(0
= 0; #%% +

1

2

(3

(1
= 0 (2)

and we have supposed that when we divide by 2, it can be replaced by
2, a mean reference density that is constant in space and time (adopting
an incompressible baroclinic model).

An important consequence of the geostrophic relation is that the horizon-
tal divergence of the geostrophic current vanishes :

r&4/% =
(%%
(0

+
(/%
(1

= 0 (3)

Thus if the ‡ow is almost geostrophic it is almost horizontally non-divergent
and we cannot reliably use the continuity equation to obtain the vertical
velocity - instead we must use the vorticity equation (1).
However, because the ‡ow is nearly geostrophic we can use the idea of a

streamfunction even though we have 3 dimensional motion. We can think of
each level, *, in the ocean as having its own streamfunction from which %%
and /% may be computed:
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/% =
(5

(0
; %% = ¡(5

(1
(4)

This does not completely specify 5 because only horizontal derivatives
are involved. So we can add any arbitrary function of * to 5 and we shall
choose this arbitrary function in such a way that "'

"!
has a useful meaning.

To this end we write the pressure:

3 = 3$(*) + 3
0(06 16 *6 ") (5)

where 3$(*) is some sort of average value (average over 0, 1 and " at each
horizontal level) so that 30 is relatively small at all levels.
Thus the 3 that appears in (2) is just 30(06 16 *6 "), and from (2) and (4)

we see that:

5 =
30

2#
(6)

Furthermore we assume that the ‡ow is in hydrostatic balance:

(3

(*
=

73$
7*

+
(30

(*
= ¡82

= ¡8 (2+ 2$(*))¡ 820(06 16 *6 ")

where we have similarly separated the density …eld out thus:

2 = 2+ 2$(*) + 2
0(06 16 *6 ") (7)

Now we choose 2+ 2$(*) to correspond to 3$(*) and 2
0(06 16 *6 ") to corre-

spond to 30(06 16 *6 "): i.e.

73$
7*

= ¡8 (2+ 2$) ;
(30

(*
= ¡820 (8)

where 20 is assumed small compared to 2$.
Thus, (6) and (8) imply that:

90 = ¡82
0

2
= #

(5

(*
(9)

where 90 is the buoyancy, with associated reference pro…le 9$(*).
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Equation (9) is nothing more than a statement of the thermal wind equa-
tion in the incompressible baroclinic model. Indeed taking k£r (9) (where
k is a unit vector in the vertical) and using (4) we immediately obtain the
thermal wind equation: # "(

"!
= ¡ ")

"*
; # "+

"!
= ")

",
.

Thus we see that "'
",
, "'
"*
have a meaning as a measure of geostrophic

current but also "'
"!
has a meaning as a measure of buoyancy. It is this

double nature of 5 which makes it very convenient in quasi-geostrophic the-
ory.
We now go on to determine the equations that govern the evolution of 5.

2.1 The quasi-geostrophic potential vorticity equation

We enter the geostrophic approximation in to Eq.(1) and write:

!%
!"

¡
# + [$%&' v%]!

¢
= #

()

(*
(10)

where

[$%&' v%]! =
(/%
(0

¡ (%%
(1

= r2
&5

and

!%
!"

=
(

("
+ v%4r (11)

Note that advection of vorticity in eq.(10) is by the horizontal geostrophic
‡ow (we discuss conditions for the neglect of vertical advection below).
Now from the thermodynamic equation we write:

!%9
0

!"
+:2) = 0 (12)

where we have assumed that )0
)!
.. 1 and supposed that

:2 =
(9$
(*
6 (13)

the static stability, only depends on z. For the moment we have set buoyancy
sources to zero on the rhs of eq(12).
We can eliminate ) between (12) and (10) to give
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Figure 1: A point vortex of strength ‘;’ in a rotating (# = 2­), strati…ed (:)
‡uid.

!%<

!"
= 0 (14)

where (using equation 4 and 9):

< = r2
&5 + # +

(

(*

µ
# 2

:2

(5

(*

¶
(15)

is the ‘quasi-geostrophic potential vorticity’ (qgpv) and eq(14) is the qgpv
equation. Note that the qgpv is conserved in horizontal motion, in the ab-
sence of sources and sinks.
The factor -2

.2 is a pure number which can obviously be interpreted as a
scale factor; .

-
is of order 30 in the ocean, 100 in the atmosphere.

So, in analogy with our equation for 2-d barotropic ‡ow, we may write
our equation for 3 -dimensional baroclinic ‡ow as:µ

(

("
¡ (5
(1

(

(0
+
(5

(0

(

(1

¶ er2

35 = 0 (16)

er2

3 = r2
& +

(2

(e*2 (17)

is a modi…ed 3-d Laplacian operator in which (assuming # and : are con-
stant):
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Figure 2: A point vortex of strength ‘;’ induces a circulation ª given by eq., if
#6 : = constant, eq.(21).

(

(e* = #

:

(

(*

thus stretching z, the geometric height by, typically, a large factor .
-
£* = e*.

3 The invertibility principle
We note that < and ª are related to one another through an Elliptic operator
eq(17):

< = er2

35 (18)

If the distribution of q is known, then, given suitable boundary conditions,
it may be INVERTED for 5 - this is the INVERTIBILITY PRINCIPLE - it
stems from the Elliptic nature of the er2

3 operator:

er¡2
3 < ) 5| {z }
/0+123/$0

(19)

This elliptic property can be traced back to the assumption of balance -
that the ‡ow is geostrophically balanced in the horizontal and hydrostatically
balanced in the vertical.
One can draw a direct and complete analogy between the electric po-

tential induced by a distribution of charge, and the streamfunction induced
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by a potential vorticity …eld in quasi-geostrophic theory. Moreover, one can
employ and exploit all the tricks that are commonly used in electrostatics
(image charges, boundary sheets of charge etc), to problems of large-scale
quasi-geostrophic dynamics.
Once 5 is known then horizontal di¤erentiation yields the geostrophic

currents, eq.(6), and vertical di¤erentiation yields the buoyancy perturbation,
eq.(9).
For example, let us compute the streamfunction induced by a point source

of potential vorticity of strength ‘;’, in a strati…ed, rotating ‡uid ( -
.
assumed

constant) of in…nite extent – no boundaries. Of course we are computing the
‘Green’s function’

er2

35 = ;=(0) (20)

In spherical coordinates

r2 =
1

&2
(

(&

µ
&2
(

(&

¶
and so

5 = constant£ 1
&
4

where &2 = 02 + 12 + e*2 = 02 + 12 + .2

-2
*2 and :># assumed constant.

One can deduce the ‘constant’ by integrating eq.(20) over a sphere; the
rhs contributes ‘s’, the lhs r5 over the surface of a sphere: we …nd that

5 = ¡ ;

4?

1³
02 + 12 + .2

-2
*2
´ 1
2

(21)

The form of this Green’s function, although simple, is highly instructive.
We note that:

² if .
-
@@ 1 (very strongly strati…ed), then the solution decays away

rapidly in the vertical. But if .
-
.. 1, the in‡uence of the < anomaly

can be felt over great depths

² if ; @ 0, then we observe a cyclonic vortex with a ‘pinching together’
of the 9 surfaces: see …g.3.
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Figure 3: Cyclone

² if ; . 0, then we observe an anticyclonic vortex with a ‘pushing apart’
of the 9 surfaces: see …g.4.

3.1 Boundary conditions

A distribution of < can only be inverted for 5 - Eq.19 - given appropriate
boundary conditions. At lateral boundaries Dirichlet conditions on 5 are
often appropriate i.e. 5, rather than gradients of 5, is typically speci…ed at
lateral boundaries. However, at upper and lower boundaries the buoyancy
distribution is speci…ed, providing, through (9), inhomogeneous Neumann
conditions on 5 i.e. "'

"!
speci…ed at upper and lower boundaries. A com-

putational and (depending on one’s point of view) conceptual simpli…cation
arises if, as we are liberty to do, the inhomogeneous Neumann condition on
5 are replaced by homogeneous ones thus.
Let us de…ne a potential vorticity b< which is exactly equal to q in the

interior of the ‡uid, except adjacent to the upper and lower boundaries.
Next to these boundaries, just inside the ‡uid, we slip delta-function sheets
of potential vorticity, <(4412 and <5$#12 whose strengths are chosen to represent
the buoyancy distributions on the boundary (see …g.5 below).
Thus:
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Figure 4: Anticyclone

b< = < + <(4412 + <5$#12 = er2

35;
(5

(*
= 0 at top and bottom (22)

i.e. b< is inverted with homogeneous Neumann boundary conditions. The
<(44126 <5$#12 are delta-function sheets of potential vorticity chosen to repre-
sent the buoyancy distributions on the upper and lower boundaries as follows:

<(4412 = ¡ #

:2
9= ("A3) ; <5$#12 =

#

:2
9= (9A""AB) (23)

The equivalence of the two can be seen by integrating:

1. b<, eq.(22) with homogeneous boundary conditions, over the body of the
‡uid, and invoking (23) and

2. <, eq.(18), over the body of the ‡uid with the inhomogeneous boundary
conditions eq(9).

In both cases the result is the same.
From eq(23), we thus see that:

² a warm (cold) lower boundary is equivalent to a sheet of positive (neg-
ative) < adjacent to the boundary.
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Figure 5: In (a) b< = < + <(4412 + <5$#12 is inverted with homogeneous boundary
conditions "'"! = 0 where <(4412, <5$#12 are PV =¡function sheets adjacent to the
boundary but just interior to the ‡uid. In (b) < is inverted with inhomogeneous
boundary conditions "'"! 6= 0. If the sheets are chosen to have strengths given by
eq(23), the interior solutions are identical.
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Figure 6: (a) warm lower boundary induces cyclonic circulation aloft (b) warm
upper boundary induces anticyclonic circulation below.

² a warm (cold) upper boundary is equivalent to a sheet of negative
(positive) < adjacent to the boundary.

The use of potential vorticity sheets in this way to represent boundary
buoyancy distributions - often called ‘Bretherton’ PVsheets, enables one to
think about surface buoyancy distributions and interior < distributions in one
conceptual framework, often leading to deeper understanding. They will also
help us interpret layer/level quasi-geostrophic models discussed later.
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4 Themomentum equations in the quasi-geostrophic
approximation

What is the momentum equation that is consistent with the vorticity equa-
tion, Eq(1). If the Rossby number is small the horizontal momentum equa-
tions reduce to a statement of geostrophic balance. But a better approxima-
tion to the true horizontal velocity is obtained by substituting the geostrophic
current in to the acceleration terms (which are already Rossby number smaller
than the Coriolis terms). The resulting momentum equation may be written:

!%v%
!"

+ #k£ v& + 1
2
r3 = 0 (24)

where 2 is a constant density and 6"
67
is given by eq(11) and v& = v%+ v8%.

Note that in the quasi-geostrophic momentum equations, advection by
the vertical velocity is neglected (see below).
Taking the C ² r£ of (24) and noting that :

r&4v8% +
()

(*
= 0

we obtain eq.(10), the quasi-geostrophic vorticity equation.

5 Conditions for the validity of the quasi-
geostrophic equations

Let C be a typical horizontal wavenumber, 2?>C is then a typical wavelength;
and let
D be a scale of vertical variation, so that:¯̄r2

&

¯̄ » C2; (

(*
» 1

D

We suppose that:

,6E are typical horizontal and vertical currents respectively

¢9¡ a measure of the horizontal variation in 9
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:2 is the static stability

Now we can estimate the magnitude of the above quantities from data,
but they are not independent of one-another. We will thus make use of
dynamical and kinematic constraints to link them together.
Since 6

67#
» C, , the criterion for geostrophic balance of the horizontal

current is that:

+$ =
C,

#
.. 1 (25)

assuming that the vertical advection of momentum is negligible.
The criterion for the neglect of vertical advection (which is equivalent

to the criterion for the neglect of "#
"!
relative to "(

",
or "+

"*
in the continuity

equation) is:

) "
"!

v4r&

» ()>(*

(%>(0
» E>D

C,
.. 1 (26)

So what are the appropriate scales to choose for E?
From the buoyancy equation (12):

!

!"&
9 » :2) =)E » C,¢9

:2
(27)

and eq(26) becomes:

) "
"!

v4r&
» E

C,D
» ¢9

:2D
.. 1 (28)

Eq.(28) says that horizontal variations in 9 must be much smaller than
vertical variations in 9 for vertical advection to be neglected.
Thus the quasi-geostrophic equations assume two things:

+$ =
C,

#
.. 1

and

¢9

:2D
.. 1
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We now want to show that conditions (28) both ‡ow essentially from the
largeness of the Richardson number.
To restrict the variety of possible systems further we make use of the

vorticity equation. If the governing vorticity equation is (1). Thus:

!

!"
[$%&' v]! » C2, 2 and # ()

(*
» #E

D

For a W scale we use, from eq(27):

E » C,¢9

:2
» #, 2

:2D

where we have exploited the observed smallness of +$ on the large-scale and
hydrostatic balance, and scaled ¢9 as suggested by thermal wind balance:

¢9 » #,

CD
(29)

The terms in the vorticity equation are thus of comparable magnitude when:

C2D2 » # 2

:2

a balance which can be expressed in terms of +/ and +$ thus:

+/+
2
$ » 1 (30)

where

+/ =
:2D2

, 2
(31)

is the Richardson number. Thus if +/ @@ 1 , then according to eq(30):

+$ » 1p
+/
.. 1

which is (25).
Furthermore, using (29),

¢9

:2D
=

1

+/+$
=

1p
+/
.. 1

which is criterion (28).
Thus we see that:
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the approximations inherent in the quasi-geostrophic equations ‡ow

essentially from the largeness of the Richardson number.

The Richardson number takes on a value of » 100 in large-scale atmospheric
‡ows and » 104 in the ocean on the large scale.
Finally, note that (30) implies that:

+/+
2
$ =

:2D2

, 2
C2, 2

#2
» 1

and so

C » #

:D
=
1

-9

the inverse of the Rossby radius of deformation. The vorticity balance (1)
thus holds on the deformation radius, -9, typically 1000 km in the atmo-
sphere and 30 km in the ocean.
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