2-D Turbulence

One might think the two-dirnensional problem might be a simpler, more tractable
version of 3-D turbulence. However, the dynamics turn out to be quite different. To see
why this is the case, let’s cousider the vorticity dynamics of each kind of flow. From the
Navier-Stokes equations for a homogeneous fluid

J 1
EquCxu——V(erEu-u)—quC

V-u=90 (1)
(=Vxu

we can derive the vorticity equation
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and the energy equation
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with B = %u -u being the energy and 7 = %C - ¢ being the enstrophy. Turbulence in the
presence of boundaries can flux energy through the walls, but for homogeneous turbulence
the flux term must on the average vanish and the dissipation is just 2vZ. Dissipation
and energy cascades are closely tied to the rotational nature of a turbulent
flow.

In the classic picture, we force the energy at a certain rate, which is then balanced
off by dissipation. But the spectrum depends only on the forcing rate and k&, not upon
viscosity. For this to hold, the enstrophy must grow as the viscosity decreases. This is
consistent with the Kolmogorov spectrum: if E(k) ~ k753 Z(k) ~ K2E(k) ~ k3. As
the viscosity decreases and we excite smaller and smaller scales, the enstrophy will become
larger and larger to compensate.

The enstrophy equation indeed has suitable source terms:

0LV (2 vV ) = Sl — V(G )
where §;; = %[V.,;uj + V;u;] is the rate of strain tensor. Therefore, if the vorticity vector
is on average aligned with the directions where the strain is causing extension rather
than contraction, the enstrophy will increase. In a 3-D turbulent flow, the vorticity is
indeed on average undergoing stretching since this term ends up balancing the sign-definite
dissipation terms.



Two-D

The two-dimensional system differs significantly in its vorticity dynamics. Since u-z =
0 and %u = 0, the vorticity is purely vertical ¢ = (Z. The enstrophy production term
becomes
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In a 2D system, the energy and enstrophy will decay monotonically
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Since the enstrophy is bounded by its initial value, the energy dissipation rate will decrease

in proportion to the viscosity; an energy cascade in the Kolmogorov sense will not occur.
However the term giving dissipation of enstrophy will have a non-trivial generation

term; this follows from the vorticity equation
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and examination of the dissipation term —v|V(¢|? If we let g = V¢ and G = 1|V(|? then
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If the contours of vorticity are aligned with the axis of extension, the gradients will be
aligned with the axis of compression and the vorticity lines will be pushed closer together,
increasing the mean square gradient. Thus enstrophy can cascade, since there is a source
term for vorticity gradients.

Spectrum — dimensional argument

These results suggest that we could derive a spectrum from an enstrophy cascade
argument: E(k) (dimensions L3/7T?) should depend on k (L 1) and the rate of enstrophy
dissipation n = ¥(V,g,)? (which has dimensions T3). The result is

E(k) = const x k—3p?/3

with the enstrophy spectrum also decreasing at small scales Z(k) ~ k1.



2D simulations

What does 2-D turbulence lock like? We show results from a 512x512 2-D pseu-
dospectral code solving the vorticity equation and the inversion of vorticity to find the
streamfunction.
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kurtosis> The streamfunction shows a marked increase in scale — the so-called “inverse
cascade” while the vorticity collects into strong isolated vortices with filamentary structure
in between. The PDF and the kurtosis of the vorticity field shows the non-Gaussian nature
of the flow quite clearly.

Inverse cascade

We can quantify the inverse cascade using an argument of Peter Rhines: consider the

average scale, defined as
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We note that ¥ = [E(k) and Z = [k*E(k) are conserved in inviscid motion. If we
presume the energy is initially near kg and is spreading then
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As the energy spreads in the spectrum its mean scale increases. Demos, Page 3: mean
k <kbar vs time>



Multiple power laws

We now have two possible power laws: the K41 law

E ~ 62/3:1{775/3

and the enstrophy cascade law
B~ 7’2/ 33

In the first case, the enstrophy transfer rate must be zero since then 1 ~ k%¢ which will
not be independent of & unless the coeflicient is zero. Similarly, the energy cascade rate
will be zero in the second case.

Calculations of the transfer rates (c.f. Kraichnan, 1967) show that K41 gives upscale
energy transfer while &2 gives downscale enstrophy transfer. We might consider using
the former in the range & < kipjection and the latter for smaller scales & > Kinjection-

Problems with the power law spectra

The assumption in the similarity models is that the turn-over time at scale k& depends
on the net shear/ strain at that scale
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For K41, this gives
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which is dominated by the contribution near & — the transfers are local. The estimate of
strain converges as ko — 0 and 60% is generated from k/2 to k. For the k=2 case, however,
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which diverges; indeed, the contribution from k/8 to k/4 is the same as from k/4 to k/2
and as that from £/2 to k. Thus the transfers are not local and the argument is not
consistent.



Vortex dynamics

Onsager (19xx) realized that vortex dynamics might indeed be a significant part, of
2-D turbulence. For the inviscid problem, a point vortex

C=s0(x—xp(t)) , ¥ =3sG(x—x(t)

is a basic solution in the sense that the inversion formula from vorticity to streamfunction
involves the Green’s function G(x) = log(|x|)/27
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To derive the formula for G, we locate the origin at the vortex, use symmetry to replace
V24 with ;—r 0 4 and use the free solution away from r = 0. Integrating over a small
disk centered at = 0 gives the constant in front.

A single vortex does not advect itsell: we can think of the motion of the point as
assoclated with the average velocity in a small disk centered at xg. This flow is produced
by all the other vortices in the flow. Thus, if we have a set of vortices at positions x;, we
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Kirchhoff (1876) realized that this could be written as a Hamiltonian systern
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For a small number of vortices, this system is integrable: it has 4 conserved properties
(energy, = and y centers of mass, angular momentum) vs. 2 unknowns per vortex. With
more than three vortices, however, the motions can become chaotic.
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Onsager{1941) considered the statistical properties of a many vortex system and pre-
dicted clumping of like-signed vortices would result, corresponding to a cascade to larger
scales.
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Vortex dynamics

To understand the merger process, let us cousider the inviscid dynamics of a single
vortex embedded in a shear or strain field. We can represent the vorticity as
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and the flow as
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The points on the boundary of D are material points since they separate fluid with different
vorticities. Furthermore, the velocities can be written as a line integral around the patch
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Thus the evolution of the vorticity contours can be posed as a dynamical system (in fact
a Hamiltonian one). We'll analyze linearized versions but show fully nonlinear examples.

Perturbed circular vortex

We shall consider a vortex patch
¢ =qo+ AH{a+n(d,t) —r)
(where H is the step function) and define the circular state
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with ¥ = Lgoy? + 9 + 4. The perturbation streamfunction satisfies
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and the condition that the edge be a material surface is
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FrREE MoODES: In terms of the Green’s function
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where 1, 18 the n** Fourier component in angle #. The kinematic equation then gives
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gives high modes being advected and low modes moving more slowly propagating against
the flow because of the vorticity gradient
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SHEAR FLOW: A background shear introduces a forcing of the n = 2 mode. If we
therefore limit ourselves to this mode, we have
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This has a steady solution with the vortex elongated along the shear when the sense of
rotation of the shear is the same as the vortex or perpendicular when they have opposite
signs
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In general 52 will oscillate around this value, depending on the initial condition. Kida
(1981) demonstrated that an exact nonlinear solution to the problem is elliptical with
the aspect ratio and orientation changing with time.  Demos, Page 7: Vortices in
shear <elliptical> <go> <strong shear> <go> < weak shear> <go>
<balanced> <go> <adverse> <go> <adverse weak> <go>



TwO VORTICES:

If two vortices arve separated widely enough, we can ignore all but the monopole field
of the second vortex in the vicinity of the first. In addition, we look at the first vortex in
a co-rotating frame. In that case the background streamfunction field looks like
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The first term in the Taylor series assuming R >> a is
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Thus the vortex is embedded in an opposing shear and can be elongated until it meets the
other vortex. In linear theory, the boundary displacement is Aa®/4R2(}, and crosses the
centerline when 1 = R/2 — a; this gives a critical separation of 2.4 radii. In fact, merger
occurs for separations less than 3.3 radii. Demos, Page 8: Vortices in neighbor
field <R=4> <go> <R=3> <go> <R=3.5> <go> <R=4 full> <R=3.5
full> <R=3.45 full> <R=3.4 full> <R=3.3 full>



