
2-D Turbulence 

One rnight think the two-tlirnensional problem rrligllt be a sirnpler, more tractable 
version of 3-D turbulence. However) the dynarnics turn out to be quite different. To see 
why this is the case, let's consider the vorticity dynarnics of each kirld of flow. Frorn the 
Navier-Stokes equations for a homogeneous fluid 

we can derive the vorticity equation 

and the energy equatiorl 

wit11 E = i u .  u 1)eing the energy and Z = +<.< being the enstrophy. Tur1)ulence in the 
presence of boundaries can flux energy through the walls. hut for homogeneous turbulence 
the flux terrn rrlust on the average vanish and the dissipation is just 2vZ. Dissipation 
and energy cascades are closely tied to the rotational nature of a turbulent 
flow. 

In the classic picture, we force the energy at a certain rate; which is then balanced 
off by dissipation. But the spectrurn depends only on the forcing rate and k :  not upon 
viscosity. For this to hold, the enstropl~y rrrlust grow as the viscosity decreases. This is 
consistent wit11 the Kolrnogorov s1)ectrurn: if E ( k )  N k p 5 / 3 :  Z ( k )  - k 2 E ( k ) N k1l3.  As 
the viscosity decreases ant1 we excite smaller and srrlaller scales) the enstropl~y will becorne 
larger and larger to cornpensate. 

The enstropl~y equation intleed has suitable source terrns: 

1
where SiJ = ?[Viuj+ Vju i ]is the rate of strain tensor. Therefore, if the vorticity vector 
is on average aligned wit11 the directions where the strain is causing extension rather 
than corltraction; the enstrophy will increase. In a 3-D turbulent flow, the vorticity is 
irltleed on average undergoing stretching since this term entls up balancing the sign-definite 
dissipation terrns. 



The two-tlirnensional systern differs significarltly in its vorticity dynamics. Since u . i  = 
0 and &U = 0, the vorticity is purely vertical < = Cz. The enstrophy production terrn 
hecornes 

C,iS,i,C, = c2s33= (Z -~ = W 0az 
In a 2D system, the energy and enstrophy will decay monotonically 

Since the enstroplly is bounded by its initial value, the energy dissipation rate will decrease 
in proportion to the viscosity; an energy cascade in the Kolnnogorov sense will not occur. 

However the terrr~ giving dissipation of enstropl~y will have a non-trivial generation 
term; this follows frorn the vorticity equation 

and examination of the tlissipation~ tern11 -vV(I2 If we let g = VC and G = ; V C 2  the11 

If the corltours of vorticity are aligned with the axis of extension, the gradients will be 
aligned with the axis of cornpression and the vorticity lines will be pushed closer together, 
increasing the rrlean square gradient. Thus enstrophy (can cascade, since there is a source 
terrn for vorticity gratlierlts. 

These results suggest that we could derive a spectrurn frorn an enstrophy (cascade 
argurner~t: E (k )  (ctlirnensio~~s L3/T2) sholild depend on k (Lpl) arid the rate of enstroplly 
dissipation TI = v(V,igi)' (which has tlirr~ensions Tp3). The result is 

with the enstropl~y spectrurn also decreasing at srnall scales Z ( k )N kp l .  



2D simulations 

What does 2-D turbulence look like? We show results frorn a 512x512 2-D pseu- 
dospectral code solvir~g the vorticity equatior~ and the inversion of vorticity to fir~tl the 
strearnfunction. 

3-C + J ( $ ,  C )  = filter 
at 

Demos, Page 2: 2D <ps i>  <zeta> Demos, Page 2: S t a t i s t i c s  <spectra> 
<pdf of ze t a>  Demos, Page 2: Averages <E and Z> <variance and 
kur tos i s>  The strearnfunction shows a marked increase in scale - the so-called "irlverse 
cascade" while the vorticity collects ir~tto strong isolated vortices with filamentary structure 
in between. The PDF and the kurtosis of the vorticity field shows the non-Gaussian nature 
of the flow quite clearly. 

Inverse cascade 

We car1 quan~tify the irlverse cascade using an argurner~t of Peter Rhines: consider the 
average scale, defined as 

We note tlvat E = J E ( k )  ant1 Z = J k 2 E ( k )  are conservetl in irlviscid rnotion. If we 
presume the energy is initially near ko and is spreading then 

Therefore 

As the energy spreatls in the spectrurn its rnean scale increases. Demos, Page 3: mean 
k <kbar vs  time> 



Multiple power laws 

We now have two possil>le power laws: the K41 law 

and the enstropl~y cascade law 
E N ,,/2/3k-3 

In the first case) the enstrophy transfer rate rrlust be zero since then r/ k 2 t  which will .I 

not 1x3 independent of k un~less the coefficier~t is zero. Similarly: the energy cascade rate 
will be zero in the second case. 

Calculations of the transfer rates (c.f. Kraichnanl 1967) show that K41 gives upscale 
energy transfer while k p 3  gives tlownscale enstropl~y transfer. We rnigl~t (consider using 
the forrr~er in the range k < ki,j,,ti ,,,
 and the latter for srr~aller scales k > ki,,,j,,ti,,. 

Problems with the power law spectra 

The assumption in the sirr~ilarity rnodels is that the turn-over tirne at scale k depentls 
on the net shear/ strain at that scale 

For K41; this gives 
,qz N k4/3 - k4/3

0 

which is dominated by the cor~trihution near k - the transfers are local. The estirnate of 
strain corlverges as ko t 0 and 60% is generated frorn k / 2  to k .  For the K 3case: however, 

which diverges; intleed. the corltribution frorn k/8 to k / 4  is the sarne as frorn k/4 to k / 2  
and as that frorn k / 2  to k .  Thus the transfers are not local and the argunr~er~t is not 
consistent. 



Vortex dynamics 

Onsager (19xx) realized that vortex dynarnics rr~igl~t indeed be a significar~t part of 
2-D turbulence. For the inviscitl problern, a poir~t vortex 

is a basic solution in the sense that the irlversion forrrlula from vorticity to strearnfunction 
irlvolves the Green's fur~ction G(x) = log(Ix)/2,rr 

To tlerive the forrrlula for G, we locate the origin at the vortex, use syrnrnetry to replace 
i aV2$ wit11 Tzr$$  and use the free solution away from r = 0. Irltegrating over a srrrall 

disk centered at r = 0 gives the constant in front. 
A single vortex tloes not atlvect itself: we can1 think of the nnotion of the poir~t as 

associatetl with the average velocity in a srnall tlisk centered at xo. This flow is protlucetl 
hy all the other vortices in the flow. Thus, if we have a set of vortices at positions xi,we 
have 

Kirchhoff (1876) realized that this could be written as a Harniltonian systerr~ 

3
-F = { F ,H }
3t 

For a srrlall nurr11)er of vortices, this systerr~ is integrable: it has 4 conserved properties 
(energy, x arltl y cerlters of rnass, angular morner~tunn) vs. 2 ur~kr~owr~s per vortex. Wit11 
rnore than three vortices: however, the nnotions can becorne chaotic. 

Demos, Page 5 :  Point vortex simulations <n=3> <delta solutions> 

<n=4> <delta> <single vortex trajectory> <long example> 


Onsager(l941) considered the statistical properties of a rrlarly vortex systerr~ and pre- 
dicted clunrlpir~g of like-signet1 vortices would result, corresponding to a cascatle to larger 
scales. 



Vortex dynamics 

To urlderstarld the rnerger process, let us consitler the irlviscid tlynarrlics of a single 
vortex ernbedded in a shear or strain field. We car1 represent the vorticity as 

qo else( = { q O + A  

and the flow as 
1 

?i, = -qoy2 + li,'2 

The points on the 1)oundary of D are material poirlts since they separate fluid with tlifferer~t 
vorticities. Furthermore, the velocities can be written as a line integral around the patch 
hountlary 

Thus the evolution of the vorticity contours can be posetl as a tlyrlarr~ical systern (in fact 
a Harniltonian one). We'll analyze linearizetl versior~s but show fully r~onlirlear examples. 

Perturbed circular vortex 

We slvall consider a vortex patch 

( = t)  -qo + A.tl(o, + ~ ( 0 ,  r )  

(where 'U is the step function) and define the circular state 

1 3  3 1v2$= qo + A.tl(o. - r) + --r-v- -?i = A 6 ( a  - r )
r 3 r  3r r 2  

wit11 li, = iqoy2+ + $I. The perturbation strearr~functio~~ satisfies 

02?i,li,'A [%(a+ rl - r )  - 'U(a - r ) ]  -. A$(a - r)= 

and the condition tlvat the edge be a material surface is 



FR.EEMODES: 111terrr~s of the Green's fur~ctiorl 

we have 
-
v = - A n . g l ( r , n )  , l i ,~ , ,=Ao. .~ , , ,g~, , ( r ,n)  

where ,rlT,, is the 7~~~ Fourier ~o r r~por~e r~ t  in angle 8. The kinerrlatic equation then gives 

This has solutions rlTl, - exp(ws(B- fit))with 

Using 

gives high rnodes being advected arltl low rnodes rr~ovir~g more slowly propagating against 
the flow because of the vorticity gradient 

Demos, Page 7: Vortex waves <c i r cu l a r>  <go> <n=2> <go> <n=3> 
<go> <n=4> <go> <n=8> <go> 

SHEAR.FLOW: A background shear ir~troduces a forcing of the 71, = 2 rnode. If we 
therefore limit ourselves to this rr~ode; we have 

This has a steatly solution with the vortex elongated along the shear when the sense of 
rotation of the shear is the sarrle as the vortex or perpendicular when they have opposite 

rl2 = -rloa 
cos 28 = 

qoan, cos 28
4n 2 A ( n  - 1 )  

In general '12 will oscillate around this value: depending on the initial condition. Kitla 
(1981) tlernonstrated tlvat an exact nonlinear solutior~ to the problerr~ is elliptical wit11 
the aspect ratio ant1 orientation cllarlgir~g with tirne. Demos, Page 7: Vortices i n  
shear < e l l i p t i c a l >  <go> <s t rong  shear> <go> <weak shear> <go> 
<balanced> <go> <adverse> <go> <adverse weak> <go> 



TWOVORTICES: 

If two vortices are separated widely enough, we can ignore all but the monopole field 
of the secontl vortex in the vicinity of the first. In atldition, we look at the first vortex in 
a co-rotating frarne. In that case the 1)ackground strearnfur~ction field looks like 

The first terrn in the Taylor series assurrling R >> a is 

4 Aa4 
go----"sin20 = --cos 20 

2R2 4R2 

Thus the vortex is err~betlded in an opposing shear and car1 be elongated until it meets the 
other vortex. In linear theory, the l>oundary tlisplacerr~en~t is Aa3/4R2C12 and crosses the 
centerline when r/ = R/2 - a;  this gives a critical separation of 2.4 radii. In fact, rrlerger 
occurs for separations less tllar~ 3.3 radii. Demos, Page 8: Vortices in neighbor 
field <R=4> <go> <R=3> <go> <R=3.5> <go> <R=4full> <R=3.5 
full> <R=3.45 full> <R=3.4 full> <R=3.3 full> 


