
Convection 
Corivection is the first exarnple we shall study of turbulence which is not homogeneous 

or isotropic, It draws on the potential energy which is available when the fluid is negatively 
stratified or has horizorital buoyancy variations. For the Boussinesq equations 

the kinetic energy satisfies 

Tlie last terrn represerits the conlversion of available poteritial erlergy to  kinetic energy. We 
car1 see the connection to poteritial energy hy noting that 

so that wb is a sink for PE: raising lighter (I)uoyan~t) fluid and lowering heavier fluid de- 
creases the potential energy. Tlie definition z b  corresponds to the starltlard rrlass xgravityx 
heiglit for a unit volurrie, once we rerrierr11)er 

Note that we really have to corripare the poteritial energy of tlie entire systenr~ to the energy 
it would have in some other obtainable state to decide if the transition is possible. In the 
figure on the following page, the various states have potential energies as follows: 

state PE trar~sitior~ SPE 
a 2 7 b c  - 21bh --t b 1 8 ( b h- be) 
b 4 5 b L  3bh 
c 2 4 b c  - 24bh --t d 1 2 ( b h- be) 
d 3 6 b c  - 12bh 
(1' 1 2 b c- 24bh --t d 1 2 ( b h- be) 
e ? b e  3 h + d  2056b - T ( b h - b c )  

f 2 4 ( b h  + b e )  td 12(bh b e )  

wliere d' is an inverted version of d. From this, we see that either horizorital gratlierits or 
irlvertetl density profiles release potential energy when the heavy fluid settles to the l>ottom 
(no surprises here!). However, we also see that the potential energy of a rnixed state is 
actually higher tlian that of a stably-stratified state. In the potential energy equation: this 
shows up as the 2  a ~ terrri~ - diffusion acting on a stable state increases the ceriter of rriass b 
heiglit and the potential energy. (The energy to (lo this rriust come frorri the molecular 
kinetic energy; the Boussinesq equations sweep this under the rug a bit in tliat internal 
erlergy is not well-represented.) 



Various states wit11 lighter fluid be, heavier fluid bh < be and a mixture. 

When dense fluid overlies less dense fluid, the layer will tend to overturn. To get 
any idea of when this rnigl~t occur, consider a blob of fluid of size h rising with speed W 
through a fluid where the temperature decreases with height 3T/32 < 0. The terr~perature 
of the blob, T, will reflect the environrner~t with sorr~e tirr~e lag for the outside terr~perature 
to diffuse in. On the rising particle, we can think of the heat budget as 

The parcel feels a buoyancy force cwg(T T ) with n being the tl~errrral expansion coefficier~t 
p = po - cx(T-To); this force rrlust balance or overcorrle the viscous drag 1/W/h2where 
u is the viscositv. 

We car1 look for exp(at) solutions to these in which case 

and unstable solutions (a > 0) will exist for 

The neutral solutions Ru = 1are simple: the fluid rises steadily 



so that the terrlperature lags its surroundings hy a fixed arnour~t~ and thebuoyancy force 
is corlstar~t and car1 balance the drag 

Rayleigh-Benard 

The classic Rayleigh-Benard problem hegins wit11 the dynarnical equatior~s for conser- 
vation of rrlass arld mornenturn arld buoyancy. We shall add rotation 

Note: There's no prognostic equation for P; how can we step the equatior~s forward? 
The original equations car1 be written in terrr~s of a prognostic systerr~ for u, p; and p. 111 
principle, it car1 he stepped forward, although; as L.F. Richardson found out, sountl waves 
rrvake any sucl~ attempt problernatical at best. For the Boussinesq equations: you have to 
find P diagnostically: if you take the tlivergence of the rnornenturn equations, the 8 terrn 
disappears ant1 you're left wit11 

from which you can cornpute P. If we use u = V 4  - V x .II, with V . .II, = 0, the first 
terrn is just fV2g3and relates the strearnfunction to the pressure - they halarlce under 
geostrophic conditions. 

Vector invariant f m 

The (u. V)u is well-defined in Cartesian coordinates, but not in other systerrls; there- 
fore, it is usefully to write the rr~orrlerlturr~ equatior~ in a forrr~ which can be converted 
to polar, spherical, ellipsoidal ... coordinates by using starltlard forrns (e.g., Morse arld 
Feshbachl 

where 5 is the vorticity V x u. Note again the reserrlblance of the vorticity to twice 
the rotation rate. You car1 think of the parcel as accelerating because of gratlier~ts in 
the Bernoulli function P + ?ju. u arltl Coriolis forces associated with plar~etary arid local 
rotation. 



Vorticity equation 

Taking the curl gives the equation for the tirne rate of change of the absolute vorticity 
Z = C + f i  

3
- Z + V x ( Z x u ) = - 2 x V b v V x ( V x Z )
3t 

or (back in Cartesian forrn, using the nor-tlivergence of u arltl Z )  

Vorticity is generatetl tjy stretching arld twisting or hy 1)uoyancy forces. 

We scale x by ti,; t by l?/n, u by h/[ t ]= n / h ,  and l>uoyancy hy [ w ] S [ t ]= hIS1 
where S is the background stratification gb (and is negative) set by the top and l>ottom 
hountlary conditions. Fir~ally~the scaling for the pressure is chosen to balance viscosity 
u[w]//i,= vn /h2 .  

1 D  x u = - v P + R ~ ~ ~ + v ~ u--U + T ~ / ~ ~
PT Dt 

wit11 b = z + b l ( x ,t ) .  
The parameters are 



Linear s tabi1it.y 

The classical problerr~ consitlers a fluitl with an ur~stable stratification confinetl between 
horizontal plates a t  ,z = 0, I L .  The temperatures on the plates are held fixed, arltl the 
hourltlaries are assurned to  be stress-free (this car1 he fixed, but rnakes the rnath rr~essier -
see Chandrasekhar). The linearized equations becorne 

We define two operators 

and start with the vertical vorticity equation 

and the Laplacian of the vertical rnorner~turn equatior~ 

Using the diagr~ostic equation for the pressure 

3 b
V 2 P= TI/ ' (+ R a -

32 

gives 
3(D,V'W = TI/^- + ~ a v i b
3z 

wit11 V i  being the borizorltal Laplacian. Elirr~inatir~g the vertical vorticity yields 

wl~ich will be corrlt>ined with the buoyancy eyuatior~ 



to get a single equation for w 

-
a hFor positive S = z,Ra < 0)this gives darnped ir~ternal waves; however, we're interested 

in the development for S < 0. 
Demos, Page 5: planforms <theta=O> <theta=45,135> <theta=O,60,120> 

<p greater than -0.33> <theta=O, 55,118> <theta=O, 99,162,274> <theta=O, 72,144,216, 

At this point we make a horizor~tal planform staterrler~t 

and a vertical structure forrr~ w = s i n ( ~ z )  

This is where bourldary conditions corne in: we have originally a sixth order equation for 
w so that we need three conditions on w, the obvious one being w = 0. The sinusoidal 
solution has the perturbation b zero, consister~t wit11 fixed temperatures on the plates. It 
also has = = 0corresponding to free slip. 

Growth rates 

We cor~tinue separating variables, now in time: 

so that D, = u + A  wit11 A = k2 + K'. The flow will be unstable when Re(u) > 0;the 
growth/ propagation rates are the eiger~values of the matrix arltl satisfy the characteristic 
equation 

1 a/Pr +A u + A
(%a +A)'(U + A )  -Ra k2 + T r 2  = 0

A A 

In the ir~viscid case. I/ = n = 0; the growth rates (dimensional) are 

and instability requires 
k 2 S + m 2 f 2< O  

which will occur for sufficier~tly srr~all scale rnotions whenever S < 0.The resting state is 
unstable when the density increases with height (or the buoyancy decreases). 



Details o f  growth rate eqn. 

For corlvenience, we replace o = (scaling time tjy the viscous rather than diffusive P T ~  
scale). Then we have 

Near the critical poir~t A3- R u  k 2  +Tr2= 0 we have 

- R u  k 2  -T r 2- A3 
u = 

A 2 ( 2+PT)- ( R u  k 2  - T r 2 P r ) / A 2  

- R u  k 2  - T x 2-A3 
-

P r  A2+ ( P r- 1 ) T r 2 / A 2  

Demos, Page 7 :  growth r a t e  surfaces  <T=O> <T=l00> <T=l000> 
The growth rate u will pass through zero on the real axis when 

Demos, Page 7 :  S t a b i l i t y  bndry <various Ra T> <closeup> <c loser>  

The srr~allest critical Rayleigl~ r1urrlt)er occurs at T = 0. k 2  = ir2and is 

corresponding to a temperature change over 1 rneter of 4x lo-' OC using (1= 2 . 5 ~~ o - ~ / ' C ,  
u = 10V2 crn2/s ,  v / ~  = 7. (The Taylor rurrltxr with f = 1 0 - ~ / sis about 1.) 

There can he an ir~stability in which R e ( o )  passes through zero at a poir~t where 
I r n ( o )  # 0. For Prandtl rlurrlt>er v / n  = 7) however) this happens at a Rayleigh rurrltxr 
larger than the value above. 

Nonlinear dynamics 



2-D convection 

When we consider corlvective rnotions which are intlepender~t of x, the zonal cornpo- 
ner~t of the vorticity equation gives us 

where 4 is the strearnfunction (w = 3,,u = -2 arld 6 the x-componen~t of Z (= '20-2= 
OY' a~ 

V24). The other two equations are 

wit11 71. = T'/'c. 
The stability 1)rol)lern has constar~t (coefficier~ts so tlvat 

( = co sin(ky) sin(.rrz)eot 

b = bo cos(ky) sin(xz)eut (tlropping prirnes) 

71 = 7ro sin(ky) cos(.rrz)eot (dropping tildes) 

(A = k2 + .rr2) and the equations l>ecorne 

giving the dispersion relation 

discussed previously. 

Fluxes 

Note that linear theory predicts a buoyancy flux 


U + K A 

w b  = b i  cos2 (ky) sin2 (mz)eZot 

IS1 

which has a non-zero arltl positive average 

o+lcA ,.
( w b )  = bo SI~I ( r r ~ z ) e ~ " ~  

21s  

irnplying that the instability will draw energy frorr~ the poter~tial energy field arld corlvert 
it to kir~etic energy (motion). 



Lorenz eqns. and chaos 

To derive the Lorenz equations, we note tlmt rnean l>uoyancy satisfies 

suggesting a correction to the rnean profile proportior~al to sin(27rz). On the other hantl, 
the rrlearl vertical rr~ornen~turn flux is zero. So we try representing the fields as 

b = X ( t )  sin(27rz) - Z(t)  cos(ky) sin(7rt) 

< = Y(t) sin(kY) sin(7rz) 

71. = U(t) sin(ky)cos(7rz) 

We substitute these into the equations arid project by the various coefficier~ts to get a 
dynarnical systern: 

3 k7r-X = -YZ - 47r2x 
a t  A 

i a 
-- Y = k R a Z - A Y - T T U  

a t  

If we rescale D --t A& and choose suitaide scales for the variables, we can get the classical 
Lorenz systerr~ (with an extra equation for rotation) 

The growth rate is given by 
u u(5+ I ) ~ ( U+ 1)+ (u + 1)T - (-

Pr 
+ l ) p  = 0 

which is a rescaled version of the previous result. The neutral cnrve is just 

p = T f  1 

Demos, Page 9:  Lorenz eqns tau=O <rho=0.9> <rho=2> <rho=20> 
<same> <rho=24.1> <same> <rho=24.2> <same> <closeup> <rho=25> 
<same> < s e n s i t i v i t y >  <closeup> Demos, Page 9:  Lorenz eqns tau=lO 
<rho=iO> <rho=20> <rho=40> <same> <rh0=8O> <same> <closeup> 
<medium rho> Crho=350> 



Bifiirca tions 

The steady solution X = Y = 2= 0 for T = 0 becornes unstable for p > 1;leatling to 
a second steady solution X = p - 1; Y = 2= d m . This solution l>econnes unstable 
at p = ,!? +P r ( P r  + 3) / (Pr  -p -1)= 24.737. This is a subcritical Hopf bifurcation. For 
larger p, the 3D system has neither stable 1D equilibria nor stable 2D lirnit cycles. 

11tt~://www.atnr1.ox.ac.uk/user/read/chaos/lect6.~~df 


Attractor 

If we consitler the probability of being in a particular volurne in (X;  Y, 2:U) space, 
it evolves by 

Note that the "velocity" in phase space is convergent 

so that the volurne contir~ually corltracts. Tllus the solutions reside on an attractor wit11 
dinr~ension~ 2.062 (Sprott, J. 1997). He also estirr~ates less tllan~ 3; calculations suggest D -
the Lyapunov exponerlts to be 0.906, -14.572. 

11tt~://s~rott.~~h~sics.wisc.edu/chaos/lorenzle.11tnn 


Mean Field Approx. 

The rrlearl field approximation (Herring, 1963, J.Atmos. Sci.) works wit11 the equation 
for the mean buoyancy 

and the fluctuation flow 

The rnean-field approx. irlvolves tlropping the nonlinear terrns in the fluctuation equations, 
so that they revert to the linear stability problern -except that the rrlearl ( b ) is changing 
wit11 time and is rnore complicated t l ~ a n ~  in the vertical. The vertical structures of the z 
perturbations will also change with tirne. However, the perturbation equations can still be 
separated with horizontal structures V 2 b 1= k 2 b 1 ,and we choose one or rnore k values. 



Note tlvat there is no real requirement that the systerr~ be two-D; planforms like those 
shown previously are perfectly acceptable. 

The rrleasure of the effects of the fluctuating/ tur1)ulent velocities is the Nusselt num-
ber, which is the ratio of the heat (or 1)uoyancy) transport to that carried by contluction 

(w'b') - K& (h)
Nu = 

-~cAh/h 

In general, we need to average over long tirr~es as well. 
Demos, Page 11: mfa <2*crit> <10*crit> <50*crit> <50*cri t ,  1,2,3> 

<Nu> 

Full Solutions 2 0  

Demos, Page 11: 2d <2*crit> <Nu> <lO*crit> <Nu> <50*crit> 
<Nu> <50*crit wide> <75*crit> <Nu> <Nu 95> <100*crit> <Nu> 
<200*crit> <Nu> <bbar> <500*crit> <Nu> <bbar> <brange> 
<w'bJ> <Nu-Ra> 

Measurements a t  high Rayleigh nurr~ber are difficult and fraught wit11 prohlerns frorn 
side walls, urleven terrlperature on the boundaries, non-Boussinesq effects, etc. But they 
tend to show Nu N Ru0.29-0.3. 
Takeshita, T., T.Segawa. J.A.Glazier, ant1 M.Sano (1996) Tllerrrlal turbulence in rnercury. 

Ph,ys. R,Pv. Let.: 76, 1465-68. 
Ahlers, G. and X.Xu Prandlt-r1urn1)er dependence of heat transport in turbulent Rayleigh- 

Bervartl convection. 
Nikolaenko, A. and G.Ahlers (2003) Nusselt nurr11)er rneasurernen~ts in turbulent Rayleigh- 

Bhnartl convection. Ph,ys. R,ev. Let., 91 
Demos, Page 11: 3d <variance i n  T> <Nu> <Nu> <Nu> 



Large Ra,yleigh number scalings 

The 2D calculations and 3D experiments suggest Nu - Raa. There are various 
argurnerlts for wlvat the power law should be: 
1) The buoyancy (heat) flux sl~ould become independent of the values of I/ and n. In 

3D turi)ulence; the flux of energy down the spectrurn is given by the rate of injection; 
viscosity only (leterrnines the scale at which it is finally tlissipatetl. If the sarrle idea 
were to hold in corlvection then 

Fb 1Nu = I, - - [Ra P T . ] ~ J ~  
(nAb/h) n 

This value of cr: = 0.5 is rruch higher tllar~ observed. But see Rachel Castaing, 
Chabautl, ar~tl H6i)ral (2001, Ph,ys. Rev. E, 63: 45303). Demos, Page 12:  Rough 
surfaces  <Apparatus> <Nu> <Nu> 

2) Suppose that the final state looks like a broken line profile and that the sharp temper- 
ature gradients a t  the boundaries are nearly neutrally stable. If the bountlary layer 
has thickness h,,, then 

Therefore 

so that the i)ountlary layer thickness tlecreases as Ru-lI3. If the flux tllrougl~ the 
boundary layer is contluctive (marginally staide) 

This works up to Ru = 4 x l o 7  (result frorn Lii)chaher; see Kklurana, A. (1988) Phys. 
Toda,y,41. 17-20). Herring fount1 this with the mean-field approach as well. 

3) Frorn Kadanoff, et al. we assurrle that 

Since the heat is carried by convection in the interior, this suggests 

so that cw = + w.  In the interior, we assurne that the balance is between vertical 
advection of w and i)uoyar~t forces 



,!? 


so that 

- ~ ~ A ~ ~ R U P~ w + R U ' ~  ~ a l + O  

h2 


giving 2w = + 1. Finally, assurrle that the buoyar~t forces in the bountlary layer 
balance dissipation 

. . 
glvlrlg = 1, - iw, . Corrlbining these three gives 

This agrees well wit11 experiments in the higher Rayleigh nurr~ber range. 
For a good general reference, see Kadanoff, L. (Ph,ysics Toda,y, Aug. 2001) and 

Errlanuel, K. (1994) Atmospheric Convection. 

Mixed layer 

In the atrnosphere and oceans, one cornrnon cause of convection is heat fluxes at the 
surface which warrn (atrr~os~here) The rest or cool (ocean) the fluid near the boundary. 
of the fluid is stably-stratified. Conceptually, the unstable region diffuses into the stable 
region, with both the buoyancy jurnp and the thickness increasing (practically, of course, 
the boundary layer always lvas sorne level of turbulence, so the transport of heat is likely to 
he related to that rather tllar~ to molecular processes). In a very short time: the Rayleigh 
rlurrlber exceetls the critical value and convection begins. We'll consider the oceanic case; 
just turn upside down (and t l~ink of b as proportional to the potential terr~~erature) for 
the atrnosphere. The diffusive layer will grow as h N a.If the 1)uoyancy flux out the 
surface is Q , the effective buoyancy difference across layer is order Q t l h  (ignoring the deep 
stratification); therefore the Rayleigl~ rlurrlber grows as t 2 .  

Demos, Page 13: Finite amp <convection into stratification> <means> 

<waterfall> <shallowerlayer> <means> <waterfall> <rotating> 

<means> <waterfall> <equilibrated> <means> 


When corlvection is vigorous, the unstably-stratified part of the water colurnn rnixes to 
hecorne essentially uniforrn. For fixed ternperature boundary contlitions, you then tlevelop 
thin layers near the boundary with thickness such that the local Rayleigl~ number is nearly 
critical. If the heat flux is fixed, these layers do not occur ant1 the ternperature gradient 
decreases to srrlall values. 

The first exarnples illustrate the developrrlent when we start with an unstable layer 
over a stable layer, with no heat flux at the surface. Then we can figure out the depth of 
convection by finldir~g the depth h such tlvat 



aF .For the profile used in the r~urnericalexperirnents ( z111 the upper ho/h  of the tlorrlain -
given by -2x the value in the lower we fir~dthat the ~r~ixin~gdepth is ,/:/Lo. This 
corresponds to IL = 0.G and 0.3 in the two cases; these estimates are consister~twit11 the 
experirnents. This assurrles that the convective elernents near the end of the experiment 
do not penetrate significar~tlyl>elowthe depth 

The effect of surface cooling will be to mix the fluid until the 1)uoyancy gradient 
hecornes zero again. We can find the new profile hy figuring out the depth l a  such that the 
heat cor~ter~tchange balances the surface cooling: 

If we hegin wit11 a linearly increasing temperature towards the surface T = To+yt, we find 
the arnour~tof heat removed by the tirne the rr~ixedlayer reaches tlepth IL is poc,yh2/2. 

If the cooling rate is constar~t~it takes a tirne Qt to rernove the heat pocPyIi2/2above 
,z = t i , ,  irnplying that the tlepth of the rrlixetl layer increases as &. 
Demos, Page 14: Surface convection <mfa> <means> <2D> <means> 

< f i n a l >  <mfa,f=O.l> <mfa,f=l> <mfa,f=5> <mfa,f=5> <2D> <means> 
< f i n a l >  

Convective Plumes and Thermals 

Thermals 

Suppose we release a blob of buoyant fluid at the surface in the atmosphere or we have 
a cor~tir~uoussource such as a therrr~alvent or smokestack: what happens? Let's corlsider 
the blob case first. 

If the blob were a 1)uoyant ol>ject, it would accelerate upwartls until it reaches its 
terminal velocity where drag matches the buoyancy force. If its 1)uoyancy initially is b, its 
volurr~eV ; ant1 its velocity W; we could use Stokes law to descrihe the rnotion by 

where b is the buoyancy of the fluid outside the blob. In reality. the blob entrains fluid 
frorn outsitle: tllis alters its volurne, its I)uoyancy, and its rnorner~turn.Let us tlenote the 



surface area of the blob by S arid the rate at which fluid crossed that surface by we ;then 
our volume: buoyancy; arltl rnorr~er~turn equations becorne 

(assuming molecular exchanges are negligible) or 

wit11 the last terrr~ giving the height of the therrnal. In this sense, er~trainrner~t acts like 
viscous drag arld conduction in that it darrlps the velocity or buoyancy hack to the external 
values. However; we cannot expect the darnping rate to be constant. 

If we rnake the er~trainrr~en~t hypothesis that the turbuler~t veloocities are proportional 
to relative velocity W and look at the case wit11 a uniforrr~ exterior b = 0 

and apply a slyape sirnilarity assumption 

we find 

v = [vf3+ U P Z ] ~z3 t3I2 , b = bn-vn 2 - 3  t-312 v 

Demos, Page 15: Thermals <Z vs t> < b  vs t> <W vs .  t> Demos, 
Page 15: Thermals in stratification <Z vs  t> < b  vs t> <W vs .  t> 
<W vs.  t linear> 



For this rnodel, we idealize the cross-section as a circle arld compute the steady state 
balances. We have 

3 2-nr W y  = cwW27rrye + n r 2 y ,
3 z  

wit11 q,  the external value arld y, the source/sink. Applying to rnass ( y  = ye = 1, ( I ,  = 0 ) :  
huoyancy (Y = b; q,  = N2z;ys = 0 )  , and rrlornerlturn ( y  = W :ye = 0, y, = h N Z Z )gives 

wit11 bb'= h -N 2 z  the local 1)uoyancy anornaly. 
1r1 the case of an unstratified environment, we can again solve the eqnations; however, 

let's corlsider how the sirnilarity solutior~ works. We assurne 

arld use the conservation of l>uoyancyflux to  find 

From the rnass arld rnorner~turn equations, we firltl the exponerlts satisfy 

Demos, Page 16: Plumes <r vs z> <b vs z> <W vs. z> Demos, 
Page 16:  Plumes i n  s t r a t i f i c a t i o n  <r vs z> <b vs z> <W vs z> 



Inhomogeneous forcing 

When the fluxes a t  the surface vary with latitude, the fluid rnust be in motion (there is 
a vorticity generatior1 rnechanisrn frorn V x h i ) .  This car1 occur on srnall scales (convective 
chimneys) or on large scales (the Hatlley cell or therrnohaline circulation). Generally, you 
get weak corlvection on the cooling side, filling the tlorr~air~with colt1 fluid which upwells 
into a atlvective-tliffusive thermocline on the warrrlir~gside. 

To illustrate orle of the connections between the large arld srrlall scales, consider the 
"ar~ti-turbulence" theorern of Paparella arld Young. Suppose we represent the surface 
hountlary conditions on b as exhange of heat with the atmosphere 

Multiplying the buoyancy equation by z antl averaging over the ocean antl over a long tirne 
gives 

The vertical heat flux is lirrlitetl by the tliffusivity 
The kinetic energy satisfies 

so that the dissipation is 

In the absence of wind forcing the dissipation is not insensitive to the srrlall scale 
dissipation coefficients. Thus, thermally tlriver~circulation is not turbuler~tin the 
Kolrnogorov sense of energy cascading to the tlissipatior~scales and rrlairltair~ir~gthe 
sarrle tlissipatior~rate even as the viscosity/ contluctivity gets srnaller. 

Wit11 winds, the required dissipation is rrlore or less indepentler~tof the viscosity and the 
flow will hecorne turbulerlt. 

The circulation strength is also limited: Siggers (2002) shows that a rneasure of the 
horizontal flux of heat is bounded by 



so that the atlvective heat fluxes arltl velocities also becorne srr~all as I/ arltl n becorne small. 
These versions of Sandstrorn's theorern confirrn Wunsch's view that the thermohaline 

circulation is tlriver~ not by the surface buoyancy gradients but hy rr~ixing in the tleep ocean 
associatetl with winds and tides. 

Other problems 

Another irrlportar~t forrn corlvection takes in the atmosphere and ocean is gravity 
currents, where dense fluid is running down a slope. Using plurne theory gives 

a
-hU2 = h ( b  - be)sin 0ax 

hut the entrainment velocity now depends on Kelvin-Helmholtz instability of the top edge. 
Price and Baringer (1994, Prog. Oceanogr., 33. 161-200) use a form 

0.08 - O.1Ri ( b- be)la cos 0 
'ue = U Ri= < 0.8

1 + 5 R i  U 2  


