
Chapter 3 

A statistical description of 
turbulence 

The evolution of turbulent flows is very complex. Turbulent flows appear highly dis­
organized with structure at all scales. Signals appear unpredictable in their detailed 
behavior. However some statistical properties of the flow can be quite reproducible. 
This suggests that it can be useful to seek a statistical description of turbulent flows. 
A statistical measure is an average of some kind: over the symmetry coordinates, 
if any are available (e.g, a time average for stationary flows); over multiple realiza­
tions (e.g, an ensemble); or over the phase space of solutions if the dynamics are 
homogeneous. 

In lecture 2 we have shown that a similar behavior is observed in simple deterministic 
maps. These maps are chaotic and not predictable in their detailed properties, but 
their statistical properties are reproducible, just like for turbulent flows. 

Thus it seems quite appropriate to introduce a probabilistic description of turbulence. 
However we know that the basic Boussinesq equations are deterministic. How can 
chance and chaos arise in a purely deterministic context? A nice discussion of this 
issue can be found, in chapter 3 of Frisch’s book. 

In this lecture we first introduce the statistical tools used in the analysis of turbulent 
flows. Then we show how to apply these tools to the study of turbulence. 

3.1 Probability density functions and moments 

A complete description of a turbulent variable v at a given location and instant in 
time is given by the probability density function (PDF), P (v), where P (v)dv is 
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the probability of the variable v taking a value between v and v + dv, and  

� +∞ 
P (v)dv = 1. (3.1) 

−∞ 

The PDF can be estimated by constructing a histogram of an ensemble of measure­
ments of v at the specified location, repeating the experiment time and time again. 
The larger the ensemble (i.e. the more times the experiment is repeated), the more 
closely the histogram will approximate the PDF. 

The moments of the variable v are derived from the PDF. The n-th moment < vm > 
is defined as � +∞ 

< vn >= v nP (v)dv (3.2) 
−∞ 

The first moment < v > is the mean: 
� +∞ 

< v >= vP (v)dv (3.3) 
−∞ 

The variance is the second moment of the perturbation quantity v′ = v− < v >, 
and describes the level of variability about this mean. 

� +∞ 
< v′2 >= (v− < v >)2P (v)dv (3.4) 

−∞ 

The skewness is the third moment of v′, normalized by the variance: 

< v′3 > 
skewness = 

< v′2 >3/2 
(3.5) 

A PDF which is symmetric about the mean < v > will have zero skewness. All higher 
odd moments of such a symmetric PDF will also be identically zero. The skewness 
reveals information about the asymmetry of the PDF. Positive skewness indicates 
that the PDF has a longer tail for v − 〈v〉 > 0 than for  v − 〈v〉 < 0. Hence a positive 
skewness means that variable v′ is more likely to take on large positive values than 
large negative values. A time series with long stretches of small negative values and 
a few instances of large positive values, with zero time mean, has positive skewness 
(Fig. 3.1). 

The kurtosis (or flatness) is the fourth moment of v′, normalized by the variance: 

< v′4 > 
kurtosis = 

< v′2 >2 
(3.6) 

A PDF with longer tails will have a larger kurtosis than a PDF with narrower tails. 
A time series with most measurements clustered around the mean has low kurtosis, 
a time series dominated by intermittent extreme events has high kurtosis (Fig. 3.2). 
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Figure 3.1: Signal with a positive skewness. 

The characteristic function P̂ (k) is the Fourier transform of the PDF, 

� +∞ 
P̂ (k) =  e ikvP (v)dv =< eikv > .  (3.7) 

−∞ 

The characteristic function of the sum of two independent variables is the product of 
their individual characteristic functions. 

If we take the derivative of the above equation with respect to k and evaluate it at 
the origin (k = 0) we see that the n-th moment is related to the derivatives of the 
characteristic function by, 

dnP̂ (k) ��
� 

n � = in < v >, (3.8)
dkn � 

k=0 

√ 
where i = −1. Then the characteristic function can be written as a Taylor series of 
the moments, 

∞ n ˆ �� ∞ 

P̂ (k) =  
� 1 d P (k) �� kn = 

� (ik)n 

< vn > .  (3.9) 
n! dkn � n! n=0 k=0 n=0 
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Figure 3.2: Signal with a large kurtosis.
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3.2 Joint probability density functions 

Turbulence, of course, involves not one, but several random variables dependent on 
each other. Therefore, it is necessary to define joint probability density functions 
(JPDF). For example the JPDF PJ (u, v) of variables  u and v is the probability of 
finding the first random variable between u and u + du, and the second one between 
v and v + dv. The integral of PJ over the u,v two-dimensional space is unity by 
definition, � ∞ ∞ 

PJ (u, v) du dv = 1, (3.10) 
0 −∞ 

and PJ (u, v) is positive definite. We recover the PDF of u by integrating PJ over all 
values of v, and  the PDF  of  v by integrating over all values of u, 

� ∞ � ∞ 
P (u) =  PJ (u, v) dv, P (v) =  PJ (u, v) du. (3.11) 

−∞ −∞ 

The moments of u and v can therefore be obtained from PJ as well. The joint first 
moment of u and v, 〈uv〉, is defined as, 

� ∞ ∞ 
〈uv〉 = uv PJ (u, v) du dv. (3.12) 

−∞ −∞ 

The covariance of u and v is defined as, 

C(u, v) =  〈uv〉 − 〈u〉〈v〉 = 〈u ′ v ′〉. (3.13) 

The covariance of  u and v normalized by the rms values of u and v (the square roots 
of their variances) is called the correlation function r(u, v) and is used to quantify 
the degree of correlation between u and v, 

〈u′v′〉 
r(u, v) =  � � . (3.14) 

〈u′2〉 〈v′2〉 

For perfectly correlated variables, the correlation function is ±1. The covariance is a 
measure of the asymmetry of the JPDF. 

Two variables whose covariance is zero, or equivalently whose correlation is zero, 
are said to be uncorrelated. Notice that two uncorrelated variables need not to be 
independent. Statistical independence of two variables requires that the JPDF can 
be expressed as the product of the individual PDFs, 

PJ (u, v) =  P (u)P (v). (3.15) 

Thus independent variables are uncorrelated, but the reverse is not true. 
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These concepts can be extended to three or more variables, but it is rarely the case 
that one has enough information about the statistics of a flow to measure quantities 
like PJ (u, v, w). 

While PDFs and JPDFs are fundamental to theories of turbulence, one seldom mea­
sures or use such quantities. Most often, only the first and the second moments are 
used to characterize the turbulent flow. Particular importance is given to covariances, 
which appear in the problem of Reynolds averaging and will be discussed at the end 
of this lecture. 

3.3 Ergodicity and statistical symmetries 

Computing ensemble means is a daunting task when dealing with laboratory experi­
ments or numerical simulations, because it requires to repeat experiments or numerical 
runs over and over. In the case of geophysical flows, the situations is even worse; we 
cannot ask nature to repeat weather patterns in order to compute our means. Does 
it mean that a statistical description of turbulence is a nice theoretical idea with 
no practical relevance? Fortunately not, because we can estimate ensemble means 
through time and spatial means, under certain assumptions. 

•	 Stationarity 
Turbulence is stationary if all mean quantities (e.g. < v >, < vn > etc) are 
invariant under a translation in time. A stationary variable v is ergodic if the 
time average of v converges to the mean < v > as the time interval extends to 
infinity, 

1 T 
v(t)dt =< v >  as T → ∞.	 (3.16)

T 0 

(See Frisch, 4.4 for a detailed discussion of ergodicity). In this case a time 
average is equivalent to an ensemble average. 

•	 Homogeneity 
Turbulence is homogeneous if all the mean quantities are invariant under any 
spatial translation. Then an ergodic hypothesis allows an ensemble average to 
be calculated as a spatial average, 

1 L 
v(x)dx =< v >  as L → ∞.	 (3.17)

L 0 

•	 Isotropy 
Turbulence is isotropic if all the mean quantities are invariant under any ar­
bitrary rotation of coordinates. 
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•	 Axisymmetry 
Turbulence is axisymmetric if all the mean quantities are invariant under a 
rotation about one particular axis only (e.g. the z axis for stratified turbulence). 

Stationary, isotropic, homogeneous statistics are frequently assumed in theories of 
turbulence, but are in fact rare in geophysical contexts where stratification and Cori­
olis break the symmetry with respect to rotation, boundaries break the symmetry 
with respect to translation, and seasonal and diurnal forcing break the symmetry 
with respect to time-shifts. However less restrictive assumptions, to be described in 
the rest of this class, allow progress to be made. 

3.4 Central Limit Theorem 

Many quantities in turbulence can be thought of as a sum of random variables. For 
example a net particle displacement in a turbulent flow may be thought as the sum 
of N random displacements by small eddies; a net velocity may be thought as the 
sum of N random velocity increments. If we assume the incremental changes xn all 
have the same unknown PDF and zero mean value, then the net change in variable 
is given by, 

N 

z = xn. (3.18) 
n=1 

If all the individual incremental changes are independent and uncorrelated with PDF 
P (x), the variance of z is given by, 

N N 

< z2 >= < xnxm >= Nσ2 , (3.19) 
n=1 m=1 

where σ2 is the variance of all the xn. (Notice that we are assuming that σ2 is finite. 
This is not always the case as for example for power-law PDFs). 

The variance of  z increases with the size of the ensemble N . As it turns out, it is 
more convenient to work in terms of the variable u = N−1/2z, which has variance σ2 

for all N . We can now determine the PDF of u. 

The characteristic function of P (u) is  given  by  

n=1P̂u(k) =< eiku >= 〈e ik/N1/2 
�N 

xn 〉 = (P̂ (kN−1/2))N . (3.20) 

We can expand P̂ (kN−1/2) as shown in (3.9), 

k2σ2 

P̂ (kN−1/2) = 1  − + O(k3N−3/2). (3.21)
2N 
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For large N we obtain the characteristic function of the sum: 

P̂u(k) = lim (1 − k2σ2/2N)N = e −k2σ2/2 . (3.22)
N→∞

The corresponding PDF is 

1 −u2/2σ2 
P (u) =  e , (3.23)

(2πσ2)1/2 

i.e. a Gaussian PDF. Therefore the sum of a large number of identically distributed 
independent variables has a Gaussian PDF, regardless of the shape of the PDF of the 
variables themselves. This result is known as the central limit theorem. 

√ 
The sum, normalized by 1/ N , of  N random, independent and identically 
distributed variables of zero mean and finite variance, σ2 , is a random 
variable with a PDF converging to a Gaussian distribution with variance 
σ2 . 

It is important to remember the conditions under which this statement holds: the 
individual variables must be independent; N must be large; the variance σ2 of the 
PDFs of the individual variables must be finite. 

The central limit theorem is most useful as a starting point, because deviations from 
Gaussian PDFs indicate that some of the assumptions discussed above are broken. 
This happens often in turbulent flows. 

3.5 Intermittency 

A signal is said to be intermittent if rare events of large magnitude are separated by 
long periods with events of low magnitude. Spatial intermittency implies that the 
signal displays localized regions with events of large magnitude, and wide areas with 
events of low magnitude. PDFs of intermittent flows are not Gaussian. If turbulence 
is dominated by coherent structures localized in space and time, then PDFs are not 
Gaussian. Flows characterized by intermittency are not self-similar. 

(Further reading: Tennekes and Lumley, Ch 6; Lesieur, Ch 5; Frisch, Ch 3, Ch 4, and 
Ch 8 for more on intermittency). 

3.6 The Closure Problem 

Although it is impossible to predict the detailed motion of each eddy in a turbulent 
flow, the mean state may not be changing. For example, consider the weather sys­
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tem, in which the storms, anti-cyclones, hurricanes, fronts etc. constitute the eddies. 
Although we cannot predict these very well, we certainly have some skill at predict­
ing their mean state, the climate. For example, we know that next summer will be 
warmer than next winter, and that in California summer will be drier than winter. 
We know that next year it will be colder in Canada than in Mexico, although there 
might be an occasional day when this is not so. We would obviously like to be able 
to predict the mean climate without necessarily trying to predict or even simulate 
all the eddies. We might like to know what the climate will be like one hundred 
years from now, without trying to know what the weather will be like on February 
9, 2056, plainly an impossible task. Even though we know what equations determine 
the system, this task proves to be very difficult because the equations are nonlinear. 
This is the same problem we discussed at the beginning of the lecture. We seek a 
statistical description of the turbulent flow, because a detailed description is beyond 
our grasp. The simplest statistical quantity we might try to predict is the mean 
flow. However, because of the nonlinearities in the equations, we come up against the 
closure problem. 

The program is to first decompose the velocity field into mean and fluctuating com­
ponents, 

u = ū + u ′ . (3.24) 

Here u is the mean velocity field, and u′ is the deviation from that mean. The mean 
may be a time average, in which case ū is a function only of space and not time. 
It might be a time mean over a finite period (e.g a season if we are dealing with 
the weather). Most generally it is an ensemble mean. Note that the average of the 
deviation is, by definition, zero; that is u′ = 0. We then substitute into the momentum 
equation and try to obtain a closed equation for u. To visualize the problem most 
simply, we carry out this program for a model nonlinear system proposed by Geoff 
Vallis   which  obeys, 

du 
dt 

+ uu + νu = 0. (3.25) 

The average of this equation is, 

dū 
dt 

+ uu + ν ̄u = 0. (3.26) 

The value of the term uu is not deducible simply by knowing ū, since it involves 
correlations between eddy quantities u′u′. That  is,  uu = ūū + u′u′ = ¯� uū. We can go 
to next order to try to obtain a value for uu. First multiply (3.25) by u to obtain an 
equation for u2 , and then average it to yield, 

1 duu 
+ uuu + νuu = 0. (3.27)

dt 

This equation contains the undetermined cubic term uuu. An equation determining 
this would contain a quartic term, and so on in an unclosed hierarchy. Most current 
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methods of closing the hierarchy make assumptions about the relationship of (n+1)-th 
order terms to n-th order terms, for example by supposing that, 

uuuu = uu uu − αuuu, (3.28) 

where α is some parameter. Such assumptions require additional, and sometimes 
dubious, reasoning. Nobody has been able to close the system without introducing 
physical assumptions not directly deducible from the equations of motion. 

3.7 The Reynolds equations 

Let us repeat the averaging procedure for the full Boussinesq equations. We start 
with the momentum equations, 

∂ū 1 
+ (ū · ∇)ū + f ẑ × ū = b̄ẑ − ∇p̄ + ν∇2 ū − (u′ · ∇)u′ , (3.29)

∂t ρ0 

The extra term on the right hand side represent the effect of eddy motions on the 
mean flow. If the average operator is a time average over some time T , then eddy 
motions are those motions with time scales shorter than T . If the average operator is 
a spatial average over some scale L, then eddy motions are those motions with spatial 
scales shorter than L. If the average operator is an ensemble mean, then the eddy 
motions are those motions that change in every realizations, regardless of their scale, 
i.e. they represent the unpredictable or turbulent part of the flow. 

Using the continuity equation, 

∇ · u = 0  ⇒  ∇ ·  ū = 0  and  ∇ · u ′ = 0, (3.30) 

we can rewrite the averaged momentum equation as, 

∂ū 1 
+ (ū · ∇)ū + f ẑ × ū = b̄ẑ − ∇ ·  p̄I − ρ0ν∇ū + ρ0u′u′ . (3.31)

∂t ρ0 

I is th unit matrix. These are the so-called Reynolds momentum equation and 
the eddy flux ρ0u′u′ represent the Reynolds stress tensor due to fluctuations in 
velocity filed. 

We can similarly decompose the buoyancy equation into a mean and a fluctuating 
component, b = b̄ +b′, and write an equation for the mean component by substituting 
back into the buoyancy equation, 

∂b̄ � � 
+ (ū · ∇)b̄ = −∇ · −κ∇b̄ + u′b′ . (3.32)

∂t 
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The eddy term u′b′ represent the Reynolds eddy flux of buoyancy. 

The problem of turbulence is often that of finding a representation of such Reynolds 
stress and flux terms in terms of mean flow quantities. However, it is not at all clear 
that a general solution (or parameterization) exists, short of computing the terms 
explicitly. 

3.8 Eddy viscosity and eddy diffusivity 

The simplest closure for the Reynolds stress terms is one which relates u′u′ to the 
mean flow, by assuming a relation of the form, 

u′u′ = −νT ∇ū, (3.33) 

where νT is the eddy viscosity. With such a closure the Reynolds stress term 
takes the same form as the mean viscosity term, but with a different viscosity. In 
essence, this closures states that turbulent eddies are similar to molecular motions 
that constantly act to redistribute and homogenize momentum. Similarly, for the 
tracer flux term we can define an eddy diffusivity 

u′b′ = −κT ∇b̄. (3.34) 

This eddy viscosity/diffusivity closure is the most commonly used in modeling and 
interpretation of geophysical observations. At the crudest level κT and νT are assumed 
to be constants; in more sophisticated models they are functions of the large scale 
flow. However, an eddy viscosity/diffusivity closure is rarely appropriate. 

(Further reading: Chapter 1 of McComb) 
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