Baroclinic Turbulence

Two layer model

We have the two PV equations
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Here F = f§/¢’'H and Q, = 8 — Uy, = F(Uy — Us).
The zonal average equations are
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The omega equation becomes
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with R = v’g’ + F — rU.

Stability

We shall arrange the forcing to produce a uniform vertical shear so that U; — U; +Uj.
The background PV gradients are

Q, = B+ F(lh —Uy)

The Rayleigh/ Charney-Stern theorem gives a necessary condition for instability: the
gradient (2, must change sign either in the horizontal or in the vertical; this will occur
when

L{l—b{2<—ﬁ1/F1 or M1—M2>,82/F2

Note the asymmetry hetween eastward vs. westward shear in the ocean where we typically
take Fy ~ %F 1: we require much more eastward shear to destabilize the flow,

To solve, we take ¢ = Gexp(ik - x + ot) with ¢ defined similarly. from the PV
specification, we have
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The dynamical equation becomes
(o + p)§; = —tkl;§; — %kaﬂ[’i + 7 k| %4
This is a standard eigenvalue problem
[—kU —kQ,L™ + k|?RL™' q = (6 + p)q

except the matrix is complex. The U, Q,, and R matrices are diagonal (with the latter
having R11 = 0, Raa = r). For the two-layer model,
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Demos, Page 2: Growth rates <r=0,ul pos F2=4 <r=0,ul neg FI1=20>
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Other problemns

The Eady model just has a different L: if subscript 1 is the top and 2 is the bottom,

then
sinh Kz sinh K (H — z)
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with K = k? + £2N/f. The active scalars are g; = %WH and ¢z = %1,[)\0 and
L KcothKH —KcschKH
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Demos, Page 2: eady <sigma vs r>

Cessation of growth

The linear problem predicts exponential growth even with friction; to stop this, the
nonlinearity must enter at some point. This could occur in the form of divergent eddy PV
fluxes

a0
which alter the mean PV and therefore the mean U fields. In turn, the linear part of the
fluctuation eqn. changes and the growth rate can drop.

The mean field approximation discussed previously relies on this mechanism. Because
of channel walls, the growing modes have

q. = §;(t) cos(kz — 6;) sin(£y)

and the phases differ between the two ¢’s and therefore between the ¥’s and ¢’s. In that
case, the v’ will not be in quadrature with the ¢'. The linear solution predicts a PV flux
proportional to sin(2fy) which tries to eliminate the negative (), gradient in the center of
the channel.

Demos, Page 2: Examples <F=100,beta=0.1> <full> <mean>



Residual circulation

We can compare the residual circulation, represented by ¢, to the Eulerian mean
meridional flow, which we can represent by

v =i — 'R/

or
¢ = 6 — V(9] — u})

These are for £ = 100, 5 = 0.1.
Demos, Page 3: Diagnostics <Eddy enstrophy> <Zonal flow> <mean>
<PV gradients> <mean PV gradients> <phi> <phia> <mean>

Infinite/ doubly-periodic domain

In this case the divergence of the eddy fluxes vanishes, so there is no feedback on the
mean. The linearly growing wave is an exact solution to the fully nonlinear equations: if

q' = flkz + Ly} = f(§)

then the inversion implies ¢’ = g(&) with

(F*+)g = Flg1—g2) =/

But the nonlinear term is now

T q) = kef'g — thf'g =0

Pedlosky (1975) and Pedlosky and Polvani (1987) suggest that the growing wave can
itself become unstable to other waves which then remove the energy. We can illustrate this
by using a wave triad in which the middle wavenumber is the baroclinically unstable one
while the smaller and larger ones are stable.
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qu = —zkb{ql - Zkai/Jl + (kggg - kggz)(i,b;q; - dl;q;) + ’T'Klz'l,bl

The indices are triad number; these need to be solved in each layer so that there are 12
degrees of freedom (6 complex ¢’s).

Demos, Page 3: triad <no nonlinearity> <nonlinear> <full calculation>
<full enstrophies> <« full enstrophies> <full energy> <zonal flow>

The full solution shows this breakdown and the development of turbulence. With
these parameters, there are zonal means with amplitudes (at the end) of about 1/3 the
maximum zonal velocity.



Upper bounds

Shepherd (1988, JAS) develops an upper bound for the wave enstrophy based on the
nonlinear stabhility theory of Arnol’d. It’s worthwhile starting from that point since it can
give insight into nonzonal systems as well.

Liapunov stability

Essentially we want to derive a functional which has vanishing derivative at the bhasic
state and then determine if it has a minimum, maximum, or saddle point there. In ther
first two cases, the basic state will be stable. For the linearized problem such a functional
can be derived directly and is proportional to the square of the perturbation amplitude (in
the unstable case having indeterminate sign for the coefficients at various wavenumbers).

We start with the PV equation and split it into basic state and fluctuation

J(.Q) = —uQ + pQy

0
§q+J(‘I&QJ+J(¢,Q)+J(¢7Q) = —ug

We presume we can take () = ()7 and that the corresponding ¥ satisfies
JU, =0
For the channel with ()¢ depending on y, this is straightforward. This relationship implies
Q=Q(r) or T =7PQ)

Then we can write the linearized stability problem as
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The perturbation enstrophy satisfies
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while the total energy obeys
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So that the Arnol’d invariant simply decays with time.
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We thus obtain the two theorems:

¢ Unstable flows imply that the energy and enstrophy are growing in time; this can only
happen if the second term can offset the first. Thus, if Qg > 0 everywhere, the flow
is stable,

o If Qy is everywhere negative, the flow can still be unstable if the available wavenum-

bers are so large that A is negative definite.
For nonlinear stability, we define the Hamiltonian functional

o= - [ [ abaGexiar)
=/’/quds

under the assumption that P is monotonically increasing (and ignoring the boundary terms
— see Shepherd, Adv. in Geophys, 32, 287-338 for a more formal derivation). Then

&ld) = Hla) - H[Q] + Cld) - C[@)
- [ywep e gL /[”F’Q+s PQ))ds

is conserved, is equal to zero when ¢’ = 0 and its first variation also vanishes (it’s quadratic
in ¢'). £ is called the “pseudoenergy.” If, therefore,

and a so-called Casimir

U < Cmin < ‘P\IJ < Cmu,:r;

and
le|‘2 =K + Cminz
then c
' (8)|? < %IW(U)H2
min

— the flow is nonlinearly stable.
For flows with translational invariance, the pseudomomentum

M= [yq—[w S=—//Oq’[Y(Q+s)—Y(Q)]dS

is also conserved. Y ((2) is the inverse of (J(y). The stability theorem now states that
C e
0 < Crmin < |Qyl < Crmor = f g (t) < f 7%(0)
Cm:in

For small amplitude, the psuedomomentum becomes the negative of the wave activity

M= [ v == [ &



Bounds

Shepherd considers the flow to he a stable zonal shear plus a deviation which includes
a zonal shear which shifts the total into the unstable range plus the wave disturbance

= Q+g=2+Q+q

This derivation follows Shepherd (and Held’s suggestion) dirctly except the layer depths
are not presumed to be equal. For the Phillip’s problem, we take I{ to be uniform. Then

J 1
ag./ ¢+ 2 / Vi85 = —Hg;

and the conservation follows directly
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For Q) > Q5 > 0, we have

/qul + Hags < QM < Q) M(0) /qul 0) + Hy—+ a q2([])
The PV gradients of the background flow are
Q=p+FU , Q=F—Fl
and the PV’s of the remainer are
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The right-hand side of the inequality (assuming the waves start off at infinitesimal
amplitude) becomes
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since H1F; = HoFs. We want to minimize this subject to
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(Shepherd uses U > 0 but that doesn’t seem necessary).
We have either 8

U= ZF — U (weak supercriticality)
9
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For the first case L1 BH
- H 2 2 < 2 U _
2H/ 1q1+H2Qz_6H1( Fy—p5)
and for strong shear
11 9 2 M
ST fH1qf1 + Hyg'5 < ﬂ(UFl + 8)?

For the run shown (U = 1, F1 = F, = 100, £ = 10), this works out to about 250(7).
Demos, Page 7: example < Eddy enstrophy>



