Particle Dispersion

Random Flight — Lagrangian dispersion

As an example, we examine the random flight model, which assumes that the accel-
erations have a stochastic component and use Newton’s equations

dX = Vdi
dV = Adt + 8dR

where A is the acceleration produced by deterministic (or large-scale) forces. We include
random accelerations with the random increment dR. satisfying (dR; dR;) = d;;dt.
As examples, consider a drag law for the acceleration

A=—r(V-u

with u being the water velocity. The dispersion is determined by 8 and r; from the
equations, we can show that

(Vi) = g
(% — )V = ) S5
(XX, 0) — (X0 X,(0) = a0

The latter corresponds to a diffusivity of k = 52/2r2.

o Area grows like 4t (6xt in 3-D)
e Velocity variance is e

Demos, Page 1: Random flight <dispersion> <mean sq displacement>



Taylor dispersion

In 1922, Taylor described the dispersion under the assumption that the Lagrangian
veloeity had a known covariance structure. He considered just

G,
X =
a0 Vit)

We find that 5
a—th;Xj = V%Xj + XFLVJ

and, in the ensemble average,

3
8_t<X”'Xj> = (Vi.X;) + (XiV5)

If we substitute .
X =X, +/ V(t"dt
0

and look at the case where {V) = 0 and the flow is stationary, we have

8 t
a—t(Xin) = /0 dt' RE(t) + RE(t)

where R{“j is the covariance of the Lagrangian velocities
Ri(t) = (Vilto + 1) Vj(to))

For isotropic motions R;(t) = U?R"(£)8;; with R (t) being the autocorrelation function;
the change in r-variance is given by

a 2 2 '
X0 =2U [0 R (1)

From this formula, we see that

e For short times,
(X2 = U242

e For long times, if the integral Tin, = fooo RL(#)dt is finite and non-zero,

(Xz) - 2U2Ti£ntt



Relation to diffusivity
Consider the diffusion of a passive scalar
0 C=-V-| V|C
ot~ L
and define moments of the distribution
w Ja"C

Integrating the diffusion equation gives conservation of the total scalar, under the assump-
tion that the initial distribution is compact and the values decay rapidly at infinity

%./C—.{ﬁ-[nVC—uC]:U

The first moment gives

J 2] . Ok dK
a/ﬂ:C—fV-[:E(HVC—uCH—/uC‘—ﬁ:%C—/uC—V-HC’X—F%C—/(uﬁ-%)C

In the absence of flow and with a constant s, %(x) = (0. Otherwise, the center of mass
migrates according to a weighted version of u+ Vx: it moves with the flow and upgradient
in diffusivity.

The second moment

ad, s g,
o () = 2aw) + 2o ()

implies that

2 ) = 0] = 2 (@) = )t + o) - (2] + 200

X

For uniform How and constant diffusivity, the blob spreads in z at a rate 2x. Thus we can
identify the effective diffusivity
K= UgTz'nt

Strain in the flow and curvature in x will alter the rate of spread.



Small amplitude motions

If we assume that the scale of a typical particle excursion over time Tj,,; is small
compared to the scale over which the flow varies, we can relate the Lagrangian and Eulerian
statistics. The displacement & = X;(#) — X;(0) satisfies

J 3}
d—tft = ui(x + &, f;) ~ ui(x, t) + fja—xju@-(x, t) +...
and we can substitute the lowest order solution
t
§i(t) = / dt’ w;(x,t")
0
into the second term above to write

25- = u;(x t)+i/t (X, ) (%, 8)
at i = U4 ’ a:rj 0 u_;r ’ g ’

and average, recognizing that the mean Lagrangian velocity is just (%fz)

(uhy = {ug) + % / (e, D (x, 1))

For simplicity, we assume that the turbulent velocities are large compared to the mean;
then this becomes

o [* g
Ly 4 _— . - —¥ = . —_— ..
(ui > - (u’?,> + 8.‘1?j [; Rzg (X,t L ) (uz> + 8.’17j /(; dTsz (X: T)

Let us assume that the integrals with respect to 7 exist and split the covariance into
its symmetric and antisymmetric parts

d 3]
Ly — N PS5, — Do~
(uf) = () + 5Dy ) + =D
with
—_ 8 1 > a 1 >
Ky =D =3 i Rij(x,7) + Ryi(x,7) . Djj=35 | Rij(%,7) — Rji(x,7)

We can write an arbitrary antisymmetric tensor in terms of the unit antisymmetric tensor

47
Dy = —eu Vg

so that the contribution to the Lagrangian velocity is

3
uf = _Eijkquk y uS =-VxW¥
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Note that the antisymmetric part of the contribution to the Lagrangian velocity is nondi-

vergent:

o o

D% x)=V-u’ =
3z: 0, (X)) =V-u” =0

Thus the Lagrangian mean velocity has contributions from the mean Eulerian flow, from
the Stokes’ drift, and a term which tends to move into regions of higher diffusivity

3]
() = (ug) +uf + 8—%*’%(3{)

We will discuss the meanings of these terms in more detail next.

Random Rossby Waves

Consider a randomly-forced Rossby wave in a channel:

%V% + (), V2 +y) = %me{v-(t)e“”] sin(fy) — vV

where 7 is randomly distributed on a disk of radius rg. This gives a streamfunction

= %Re[a(t)ezkﬂ sin(fy)
with p
_ Y.
i (v +w)a = %

and w = —Bk/(k* + £2).
t
a= %/ dre~ (7" Tp(t — 1)

— o0



Stokes’ drift

Consider first the steady wave case.
€ . .
¥ = —sin(w|x — t]) sin(my)
=
We look at the particle trajectories by solving the Lagrangian equations as above

d
a =u(x+ £, %)

For small € (which is the ratio of the flow speed to the phase speed, we can find an
approximate solution (as before) by iterating

0 ; 0
&6% ~ y;(x,t") + fﬁa—gg‘juz‘(x,t) +...

a 4
~ uy(x,t) + —/ wi(x, )i (x, t)dt’
The mean Lagrangian drift is therefore

13} 3} ¢
5;5:‘ = E/D Rij(x,7)dr

Treating the mean as a phase average gives

Rii(r) €2 cos TT cos® Ty sin 77 sin my cos Ty
i (T) = — . . .
* 2 \ —sin 77 sin Ty cos Ty cos T sin” wy
the integral gives
¢ 2 X a2 08 K .
€ sin wt cos® Ty (1 — cos wt) sin 7y cos Y
Dy(t) = [ Rij{r)dr = — : . L :
0 2 \ —{(1 — cos 7t} sin Ty cos 7Y sin 7 8in” wy
so that the drift is
2

7]
ur, = Eﬁgl = %Cos(Zﬁy)[l — cos(mt)]

62

J
VL = E‘f? =3 sin(27y) sin 7t
Note that there is a time-averaged drift

€2
ur = ) cos(2my)

prograde on the walls and retrograde in the center.
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Note that we can split D;; as usual:

0 13,
L o
0 13,
= —K.; — —¢..
ai?j K E)mj Etﬂc‘llk
0

with the first term giving the up-diffusive-gradient transport associated with the symmetric
part of j R;; and the second, nondivergent part, arising from the antisymmetric term, gives
the Stokes drift. For the primary wave,

K €2 (sinwtcos? Ty 0
P4 — . .2
¢ 27 0 sin 7t sin” 7y

and has no time average, while

2
€
Vg = ——(1 — cosmt)sin 2w
3 47r( ) Y
produces the nondivergent Stokes drift (and does have a mean). Demos, Page 7:
drift <amp=0.2> <amp=0.2 comoving> <amp=1.0>  <amp=1.0 comoving>
<gtokes drift> <mean>

FINITE AMPLITUDE
In the frame of reference of the wave (X' = X — ct)

d N

a—tX’ =uX')—e=zx V(¢ +cy)

Thus particles simply move along the streamlines. At some Lagrangian period Tp, the
particle will have moved one period to the left so that

X(Ty) — X(0) A Tg

X'(Tp) = X(0) =\ = —¢T = :
(Tr) 0)=A=X(TL)-cTr = u T T T,

Stokes drifts occur when the Lagrangian period differs from the Eulerian period. Trapped
particles have

X’(TL) = X(U) = X(TL) — Ty = uUr, = X(TL?I; X(U) =c




Back to random wave

From I
¥ = —LRela(t)e™] sinty)
with .
a= 1/ dre=O"3Tp(1 — 1)
2 — 00
we find
Plr,y, Oy, ¥, t) =
U2
21?26 —Y=) coslk(x — 2') — wlt — )] sin(£y) sin(£y’)
Lo o cos wT cos? fy %sian sin £y cos £y
Bma(7) = §U08 —Eginw ¢ I b cos wrsin® £
—7 T 8in £y cos Ly 77 CO8 wT sin® £y
This gives
1 Ug v cos? Ly w¥ sin by cos £y
Dm":§72+w2 —w& sin fy cos £ K sin? ¢
> 4y cos by Y55 sin” £y

The diffusivities and Stokes’ drift are given by

k?
(Kllv KQQ) U[]272 2((,0&; Ey ﬁ.‘:lﬂ P?j)

1 .k
2 3?%%‘5 sin fy cos by

w

ﬁcosﬂy

v 4w

L _ 1U2k_2L
270 £ 24 w?

Demog, Page 8: structure <K,u,v> Demos, Page 8: stokes drift <«lim

vs act sd> <mean drift>

v sin 28y

Conclusions:

e Rossby waves cause mean westward drifts at the edges and eastward drifts in the
center.

e Eddy diffusivities are spatially variable and anisotropic.



Chaotic advection

We start with the basic wave
P = £ sin(r[z — ¢]) sin(mry)
T

and add a small amount of a second wave
h=+/1— 1602~ sin(w[z — t]) sin(wy) + a sin(4m[x — e1t]) sin(47y)
T T

Demos, Page 8: psi <alpha=0> <alpha=0.01> <alpha=0.1>

When we have « non-zero, the trajectories become less regular in the vicinity of the
stagnation points. A line of particles approaching the point begins to fold, with some fluid
crossing into the interior and some being ejected. Which way a parcel goes depends on the
phase of the perturbing wave as it nears the stagnation point.

Demos, Page 9: 1lobe dynamics <alpha 0.008>

We can look at Poincaré sections (snapshots at the period of the perturbing wave)
at various amplitudes to see the mixing regions Demos, Page 9: poincare sections
<alpha=0> <alpha=0.002> <alpha=0.004> <alpha=0.008> <alpha=0.016>
<alpha=0.032>  <alpha=0.064> <alpha=0.128>

The mixing across the channel is still blocked for o small enough < (.05 so the mixing
is still diffusion-limited, although some gain is realized by enhanced flux out of the wall
and a decrease in the width of the blocked region.

Demos, Page 9: Continuum <steady> <weak> <strong>
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Active Tracers

We review mixing length theory applied to a set of active scalars (think in terms of
biological properties}:

D
Ebz’ + V- (upioh;) — VeV = Bi(b,x, )

Split the field into an eddy part which varies rapidly in space and time and a mean part,
which changes over larger (order 1/¢) horizontal distances and longer (order 1/€%) times:

bi = bi(2X, T) + b (x, 2, t|X, T)

We must allow for short vertical scales in both means and fluctuations. Counterbalancing
thig difficulty is the fact that vertical velocities tend to be weak (order fi X %) We
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assume the mean flows are small T ~ eu’ and the coeflicients in the reaction terms vary
rapidly in the vertical but slowly horizontally and in time.

D
E—V YV —
B 5 0
L‘)t+u Vg = V- nV——azﬁ:v—az]
Ve[, Vi +TmVim — Vinkimn Vi — Venfimn Vi + Ro 9 }
€ Oz
D Ro_ 0
2 _— —_—
+e [OT + U Vm — Vibmn ¥y + — 8:5]

Vertical Structure

1) We assume the case with no flow has a stable solution:

aw‘g_a d
Dy ool T g e,

Demos, Page 10: bio dynamics <growth rates>

—b; + Bi(b, z|X, T)

2} The eddy-induced perturbations satisfy

+u V=V aV| b+ —wpod =

d J
ot Oz

0B; - —
()_égjb; —-u- Vbz = szb:; —-u- Vbi
with W = (8/0X, 8/0Y, 8/0z).

3) The equation for the mean is

9 B o _
|:ﬁ +0-V — VhV:| bq, + V- (ud)+ &wbwbz =
1 9%B;

I
28bdbbb

B;i(b,z|X,T) +

Summary:

Eddies generate fluctuations by horizontal and vertical advection of large-scale gra-
dients, but the strength and structure depends on the biologically-induced perturbation
decay rates.

Perturbations generate eddy fluxes and alter the average values of the nonlinear bio-
logical terms.
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NPZ
A simple biological model (mixed layer):

PN
DP— a — EZ[I—exp(—uP)] —dpP + VKVP

Dt N4k, v

D
2= a9 71— exp(—vP)| - dyZ + ViV Z
D ,u.PN (1—a)g

—N=— — exp(—vP
Dt Ntk T Al eel-vP)

+dpP +dzZ +VEVN
or N=Np-P -4

Mean-field approach
We can get a very similar picture using the mean-field approximation: take

ig@ +%u- VE' +V- (W) + agwbiog?l — VFLVE' = B; (B+ b/, x, t)
Z

ot
O?B; ——~
B;(b, z|x, ) + 2(31)()() by,
8 ! ! .'I ! C‘) !
—b;+%- Vb, + V- (0, —u't) + 57 —wpich; — ViVb; =

ot
—u’ - VBT, + BZ(E—Q- b, x, t) — B@(E-l- b’ x, )

or (dropping the quadratic and higher terms)

d &
a—tb +u Vb + a“’LUb?,O

The differences are subtle: the MFA does not presume that the scale of b; is large but
linearizes in a way which may not be consistent.

VFLVb ~—u - VE + Btjb_';
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Separable Problems

The mesoscale eddy field has horizontal velocities in the near-surface layer which

are nearly independent of z, and the vertical velocity increases linearly with depth w’ =
s(x,1)z. The stretching satisfies

s(x,t) = =V -u(x,1)
For linear {or linearized perturbation) problems in the near-surface layers, we can separate

the physics and the biology using Greens’ functions.
We define the Greens function for the horizontal flow problem:

((% +ul(x,t) V- Vh:V) G(x,x',t —t) =6(x—x)s(t—1t)

The perturbation equations can now be solved:
b, = — /dx' /dt’G(x,t|x’,t’)uf,n(x’,t’)¢m7i(z,t—t’)
- /dx’ /dt'G(x,t|x’,t’)s’(x',t')g@i(2,t —t')

The two functions representing the biological dynamics both satisfy

0 ,_aﬁ 0 1B
Dr T Bz gt T PP

with B;; = 9B;/0b;. These give the diffusive/ biological decay of standardized initial
perturbations

_ g _
(2. 0) = . (2 0) = z—b:
¢m,z (Z‘J ) Vmbz bl (p?; (77 ) Z az bZ
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Simple Example

If we ignore vertical diffusion and advection and consider only one component with
Bi1 = —A, we have
— AT N
Qbm,vl =€ Vmbt

s0 that
b, = — U dx’/dt'e—/\(t—t’)a(x,t|x’,t’)u;1(x’,t’)} V..b;

The eddy flux takes the form

wl b= — [/ dx’/dt’e_)‘(t_t’)u;n(x, t)G(X,t|x’,t’)u;(x’,t’)} Vb
= — [/ dx'/dt’e_)‘(t_t’)Rmn(x,t|x’,t')] V,.b;
If we split the right-hand side into symmetric and antisymmetric parts, we find
ul, b = =K Vabi + €mni U Vb,
= —K Vb — (€t Vi U3 )bi + €mnk Vo (U30;)

The last term has no divergence and can be dropped. Thus the eddy flux is a mix of
diffusion and Stokes’ drift:

-_ N \T

ur b = —K2 Wb, + Vb

Both coefficients depend on the biological time scale A71.
For the random Rossby wave case, the Stokes drift term is

A KE

= m(— cos(2y) , 0)

while the diffusivity tensor is

KE cos®(y) 0 )
KX =2(y+\)——m— ) i
2] (7 ) (,Y + )\)2 + i ( 0 sz(y)

Demos, Page 13: effective coeff <<effective k,v>
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Not so simple example

“Mixing length” models
Fluz(b) = —k.Vb

even if appropriate for passive tracers are not suitable for biological properties whose time
scales may be comparable to those in the physics. Instead, we find

u, b = — [ / dTEB”TRmn(T)} Vanb;

where R,y is the equivalent of Taylor’s Lagrangian covariance (but including «).
We divide the coefficient into symmetric (K) and antisymmetric terms related to the
Stokes drift (V) - _ L
w b= —K Vb +V7h;

Note that
o Eddy diffusivities and wave drifts mix different components (flux of P depends on
gradient of Z).
o If R has a negative lobe, the biological diffusivities can be larger than that of a passive
scalar
e The quasi-equilibrium approximation

Bijb; =u -V
works reasonably well in the upper water column. In particular
Boit =gZexp(—vP) >0 . By =0
so that

1 — —
P = B—ul -VZ unlike ' =-¢-VC
21

Demos, Page 14: complex diffusion <transport coeff: display —geometry

+0+0 -bordercolor white -border 20x20 -rotate 90 “glenn/12.822t/graphics/t0.ps>

up Z grad flux of Ptl.ps <quasiequilibrium fluxes: display -geometry +0+0 -

bordercolor white —border 20x20 -rotate 90 “glenn/12.822t/graphics/tla.ps> down-

gradient Kpp,KZZt2.ps
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Eulerian-Lagrangian

If k = 0, we can relate the relevant form of the Eulerian covariance

Royn(x, tx' t") = vl (%, ) G(x, t[x', t un (X, )

to Taylor’s form. The Greens’ function equation

3}
B_tG +u(x,t)- VG = 6(x —x')6(t — )
has a solution

Gix, t|x',t') = 6 (x — X(¢|x', 1))

where 5

EX@MJﬂ:MXJ), X%, t') =x'

gives the Lagrangian position of the particle initially at x’ at time ¢’. But it is more
convenient to back up along the trajectory and let

G(x, t|x',t") = 6(x" — &{t — t'|x, 1))

where the particle at £ at time ¢’ passes x at time ¢ (and takes a time 7 for this tranistion).
Thus the £’s give the starting position, which, for stochastic flows varies from realization
to realization. We can solve

d
gl t) = —uE(rix .t -T) 0kt =x
form=0to 7 =1¢—1tto find &.

We can now define the generalization of the Lagrangian correlation function used by
Taylor

Rt — ',%) = [ XX DO AR, D) (5, )

= (%, O, (8 = ¥, 1), 1 = (t = 7))

Rupn (7, %) = g, (%, )], (€ (7], 1), ¢ — 7)

For homogeneous, stationary turbulence (on the scales intermediate between the eddies
and the mean), this will be equivalent to Taylor’s

Ryn () = ) (Xt + 7|, ), ¢/ + T)ul (X', )

but we include inhomogeneity and (for, general &, diffusion).
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