
Biogenic opal


What is it? 
Amorphous silica: 

! 

SiO
2
"nH

2
O (~ 10% water) 

Precipitated in the surface ocean by:

-- phytoplankton


diatoms, silicoflagellates

-- protozoans


radiolaria


A fraction fall of this opal falls to the sea floor 
-- it’s efficiently recycled, in water column and sediments 

-- overall, ~ 3% of opal production is preserved in sediments 



The solubility of biogenic opal in seawater

Initial Studies -- Hurd, 1973, GCA 37, 2257-2282


Experiment: 
-- separate opal from cores 
-- clean with acid 
-- place in sw at controlled temp 

After ~ days: 
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Note: 
T dependence 

Solubility ~ 900 µM at 2°C ! 

Chart removed due to copyright restrictions.
Please see: Hurd, D. "Interactions of biogenic opal, sediment, and seawater
in the Central Pacific."  Geochimica et Cosmochimica Acta 37 (1973): 2257-2282. 
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Please see: Hurd, D. "Interactions of biogenic opal, sediment, and seawater in the Central Pacific." 
Geochimica et Cosmochimica Acta 37 (1973): 2257-2282.



A mineral,

undersaturated in seawater


apparently simple dissolution kinetics…


What do we expect [Si(OH)4] in pore water to look like? 
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Diagenesis of a solid
   Undersaturated in bottom water
    
    Asymptotic approach to saturation in pore water 



Image removed due to copyright restrictions.



Comparing asymptotic pore water [Si(OH)4] to

the “equilibrium” value
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Image removed due to copyright restrictions.
Please see: Cappellen, Philippe Van, and Linqing Qiu. "Biogenic silica dissolution in sediments of
the Southern Ocean." I Solubility,  1109-1128.



Incorporation of
 Al into silica
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Schematic representation of Al(III)-mediated interactions between detrital matter and biogenic 
silica in sediments. The interactions depicted are those for which evidence was obtained in this
 study. (Note: this does not exclude additional processes involved in controlling the build-up of 
silicic acid in marine sediments.)

Figure by MIT OCW.



Studies of the Preservation Rate of Opal in deep-sea

sediments


Components of the studies: 

Rain rate to sea floor : time-series sediment traps 

Benthic remineralization rates : flux chambers ; pore waters 

Burial rates : solid phase measurements 



Opal preservation efficiency in sediments : summary

Sources: Ragueneau et al., 2001


Nelson et al., 2002, DSRII 49, 1645-1674
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% opal in sediments -- from Gruber and Sarmiento 

Image removed due to copyright restrictions.
Please see: Gruber, and Sarmiento. Ocean Biogeochemical Dynamics. Princton, NJ: Princeton University Press,
2006. ISBN: 9780691017075.



Graphs removed due to copyright restrictions.
Please see: Gruber, and Sarmiento. Ocean Biogeochemical Dynamics.  Princton, NJ: Princeton University Press,
2006. ISBN: 9780691017075.

.
 





 Image removed due to copyright restriction.
Please see: Sayles, J. "CaCO3 solubility in marine sediments: Evidence for equilibrium and non-equilibrium behavior."
Geochim Cosmochim Acta 49 (1985): 877-888.



 
 Image removed due to copyright restriction.
Please see: Sayles, J. "CaCO3 solubility in marine sediments: Evidence for equilibrium and non-equilibrium behavior."
Geochim Cosmochim Acta 49 (1985): 877-888.
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Graphs removed due to copyright restrictions.
Please see: Gruber, and Sarmiento. Ocean Biogeochemical Dynamics.  Princton, NJ: Princeton University Press,
2006. ISBN: 9780691017075.
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Please see: Gruber and Sarmiento. Ocean Biogeochemical Dynamics. Princton, NJ: Princeton 
University Press, 2006. ISBN: 9780691017075.



0

0

1000

2000

3000

4000

5000

6000

7000

0

0

1000

2000

3000

4000

5000

6000

7000

10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100

W
at

er
 D

ep
th

 (m
et

er
s)

W
at

er
 D

ep
th

 (m
et

er
s)

CaCO3

CaCO3

Lysocline

Calcite
Compensation
Depth

Lysocline : depth at which there is evidence of dissolution

CCD : depth at which % CaCO3 = 0  i.e, at which dissolution rate = supply rate.
CCD is straightforward; but what does lysocline indicate?

%

Figure by MIT OCW.



Is %CaCO3 a sensitive indicator of dissolution? 

Figure removed due to copyright restrictions.
Please see:  Broecker, W. S., and T.-H. Peng. Tracers in the Sea. Palisades, NY: Lamont-Doherty Geological
Observatory, 1982. 



“Metabolic” calcite dissolution 

Oxic respiration results in the release of acids to solution : 
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Acids are neutralized by
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"
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(and similar reactions for neutralizing H+)




Graphs removed due to copyright restrictions.
Please see: Hales, B., et al. "Respiration and dissolution in the sediments of the western North Atlantic:
Estimates from models of in situ microelectrode measurements of porewater oxygen and pH." DEEP-SEA RES
(A OCEANOGR  RES PAP) 41, no. 4 (1994): 695-719.



2nd in situ wcs result -
-
Cape Verde Plateau, E. tropical Atlantic


well above CSH


Lines = fits of model to data to quantify dissolution rate


Figure removed due to copyright restrictions



Counter evidence?

In situ benthic flux chambers

Jahnke & Jahnke, 2004, GCA 68, 47-59 
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Figure by MIT OCW.



One more approach -
-
230Th activity changes near swi


Martin, 2004 
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Conclusions -- CaCO3 

1)	 Dissolution is driven by undersaturation -- callcite is the most important CaCO3 minerall 
in the deep sea. 

2) Calcite solubility + biogeochemical cycles ===> the degree of saturation of seawater 
with respect to calcite decreases with increasing depth AND decreases going from 
the deep Atlantic to the deep Pacific 

3) Calcite solubility -- that is, its preservation efficiency -- drives the major features of the 
oceanic calcite distribution 

4) BUT : oxic metabolism can drive dissolution of calcite in sediments lying above the calcite 
saturation horizon. This “metabolic dissolution” may play an important role in the 
marine carbonate cycle -- but its occurrence in high %CaCO3 sediments is debated. 


