12.742 - Marine Chemistry

Fall 2004

Lecture 13 - Primary Production: Water Column Processes

Prof. Scott Doney

- Somewhat different organization from years past start with surface productivity and work our way down the water column
- Try to fold methods in as we go
- Electronic notes still missing many of the figures also somewhat different order.

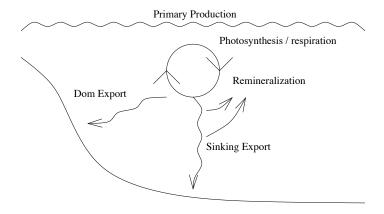


Figure 1.

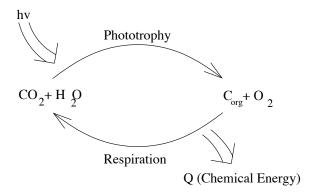


Figure 2.

- Formation and respiration of organic matter
- Formation and dissolution of $CaCO_3$, SiO_3
- Transport of dust, resuspended sediments, particles
- Scavenging onto particles
- Elemental stoichiometry
- Water column distributions
- Rates
- Categorize organisms by source of energy, inorganic electron donor and carbon source.
 - · Chemo litho autotrophy
 - · Chemo organo heterotrophy
 - · Photo litho autotrophy

- Light absorbed by pigments.
 - mainly chlorophyll a
 - also accessory pigments (which absorb different wavelengths) including forms of chlorophyll (b, c1, c2) carotenoids, bilioproteins

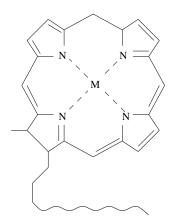
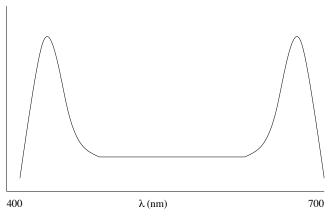



Figure 3.

Absorb in Blue and Red (leave Green)

Figure 4.

- Chlorophyll has conjugated double bonds non-localized π orbital electrons, can absorb solar radiation, bump up to higher electron state
- PAR photosynthetic available radiation (350 - 700 nm)
- Convert light energy into electron energy
- Light harvesting pigment-protein complexes involved in electron transfer, funneling excited electrons to reaction sites.

- Two types of reactions
 - Light reactions

Photosystems I and II - redox/electron exchange

ATP - adenosine triphosphate

Photosystem I - reduction of $NADP \rightarrow NADPH_2$

Nicotinamide adenine dinucleotide phosphate (NADP)

Photosystem II - liberation of O_2 from water

Interconnected photosystem II \rightarrow photosystem I (photosynthetic unit)

Light reactions (light into energy and reducing power),

$$2H_2O + 2NADP^+ \xrightarrow{8h\nu} O_2 + 2NADPH + 2H^+$$
 Delta G = +105.5kcal/mol

Coupled with phosphorylation reaction,

$$4ADP + 4P_i \rightarrow 4ATP$$

- Dark reactions

Calvin/Benson cycle - biochemistry ($CO_2 \rightarrow \text{carbohydrate}$)

$$2H^+ + CO_2 + 2NADPH \rightarrow (CH_2O) + 2NADP^+$$

which requires 3ATP:

$$3ATP \rightarrow 3ADP + 3P$$

where (CH_2O) is a generic carbohydrate. The net reaction is:

$$CO_2 + 2H_2O \xrightarrow{8h\nu} (CH_2O) + H_2O + O_2$$

- Respiration by phytoplankton (light and dark)
 - Use stored organic matter to regenerate energy

$$CO_2 + H_2O \leftrightharpoons CH_2O + O_2$$

- Forward reaction Gross Primary Production (GPP)
- Reverse reaction respiration (autotroph)
- Net Primary Production (NPP) = GPP autotroph respiration
- Typically respiration small: ≤ 0.1 GPP, but can be higher in tropical oligotrophic ~ 0.4 GPP
- What limits/controls primary production?
 - autotroph biomass (grazing, excretion, mortality)
 - light
 - nutrients
 - temperature (growth rates versus photosynthesis)
- So where is most of the biomass (phytoplankton)?
 - Photosynthetic Quotient $\left[-\frac{O_2}{CO_2}\right]$

$$CO_2 + H_2O \leftrightharpoons CH_2O + O_2 \qquad PQ \sim 1$$

requires ~ 532 kJ.

But PQ for algae is > 1 because of production of proteins and lipids (carbohydrates, DNA)

Eg: fatty acid $CH_3 - (CH_2)_{10} - COOH$

$$C_{12}H_{24}O_2 + 17O_2 \leftrightharpoons 12CO_2 + 12H_2O \qquad PQ \sim \frac{17}{12} \approx 1.42$$

Alfred Redfield in the 1930s-1950s examined the elemental composition of marine phytoplankton (now call "Redfield ratios")

Anderson proposed

$$C_{106}H_{175}O_{42}N_{16}P + 150O_2 \leftrightharpoons 106CO_2 + 16HNO_3 + H_3PO_4 + 78H_2O_3$$

- Main primary producers:
 - by phylogeny (genomics, metabolics, and cellular form) phylogenitvely rich/diverse taxonomy $2 \cdot 10^4$ species (?) cyanobacteria (prokaryote), eukaryotes (green and red algae), red (diatom, dinoflagellates)
 - by size (important later for grazing, export, etc) haptophytes (coccolithophorids), chrysophytes (Note: pico 0.2 20 μ m, nano 2.0 20 μ m, micro 20 2000 μ m, micro > 2000 μ m
 - guild/geochemical function group nitrogen fixers, calcifiers, silicon shells, etc

Spatial distribution based on field surveys and satellite remote sensing

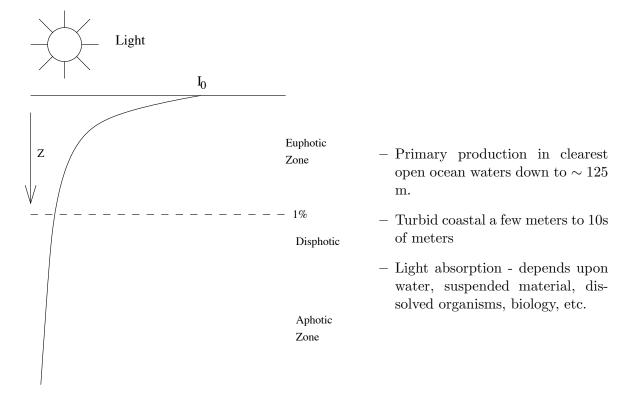


Figure 5.

Lights falls off with depth $I(\lambda, z) = I_0(\lambda)e^{-k(\lambda)z}$ (For PAR, exponential is only an approximation)

 $k = k_w + k_c Chl + other absorbers$, PAR ~ 0.5 total irradiance

Change spectral character of light (strip out all of the red, for example)

Photosynthesis - irradiance curves

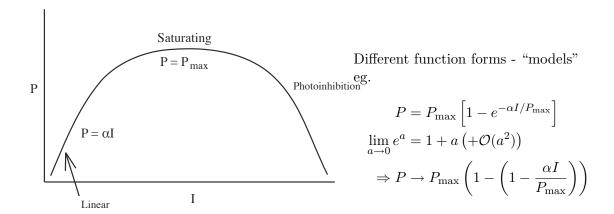


Figure 6.

Light and mixing

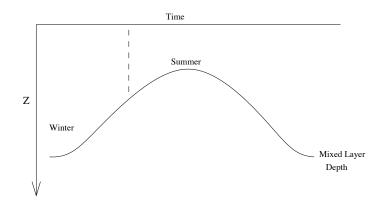


Figure 7.

Trigger spring bloom when have enough "average" light (when mixing depth shoals to the critical depth $Z_{\rm CR}$)

$$\frac{1}{kZ_{\rm CR}} \left(1 - e^{-kZ_{\rm CR}} \right) = \frac{R_0}{P_0} = \frac{I_c}{I_0}$$

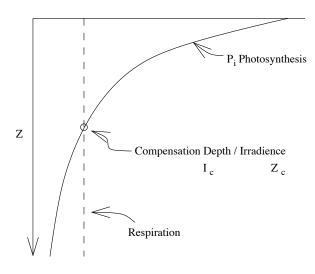


Figure 8.

at the compensation irradiance, I_c , $P_c = R_c$ (autotroph production equals community respiration)

$$I_c = I_0 e^{-kZ_c}$$
 $P = \alpha I, P_0 = \alpha I_0$

At critical depth, total integrated respiration = integrated production Harold Sverdrup first identified critical depth $Z_{\rm CR}$ defined as depth where depth integrated respiration = depth integrated production.

$$R_0 Z_{\rm CR} = \int_0^{Z_{\rm CR}} dz \, \alpha I_0 e^{-kz}$$

ullet Nutrient limitation N

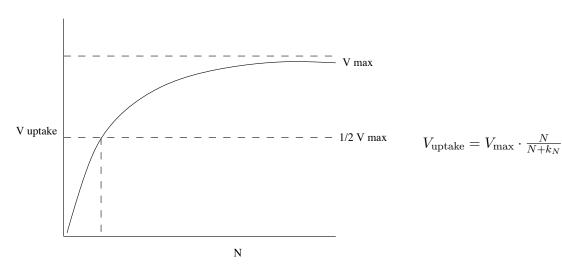


Figure 9.

• Complications

- Many different possible limiting nutrients N, P, Si (diatoms), also, trace elements Fe, Co, Zn, \ldots
- Multiple forms of nutrients $\underbrace{NH_4^+}_{\text{most easily}}$, $\underbrace{NO_3^-}_{\text{in ocean}}$
- Dissolved organic matter as source of nutrients
- Nutrient inhibition (eg. NH_4^+ on nitrate)
- Multiplicative i.e. Liebig's law of minimum; nutrient-light co-inhibition

• Temperature limitation T

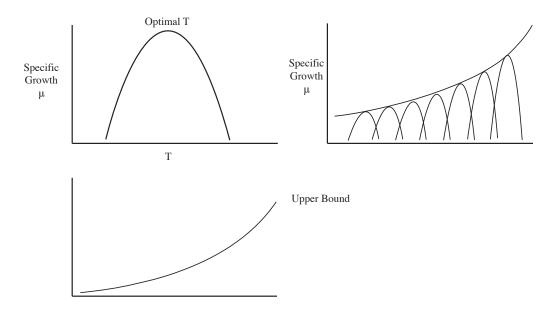


Figure 10.

Eppley curve [1972] for maximum autotroph specific growth rates μ (1/day) $\mu(T)=\frac{0.6}{d}1.066^{T({\rm deg.~}C)}$

alternative temperature curves defined with form similar to Arrehnius relationship

• Time-Space variations

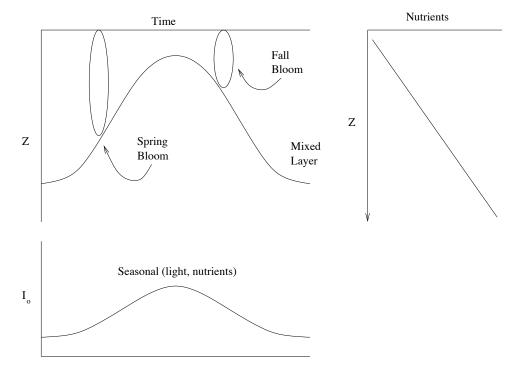


Figure 11.

during spring, have increased light (solar, mixed layer depth) and higher nutrients (from deep winter mixing)

Balance of light versus nutrient limitation depends upon location

• Variations with depth

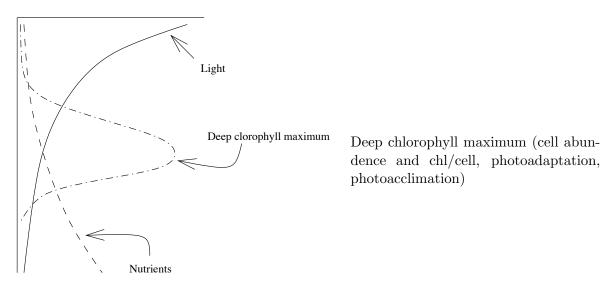


Figure 12.

Globally

- Spatial maps of chlorophyll (proxy for biomass)
- Primary determinant is nutrient supply
- Regions of upwelling (equatorial divergence, coastal upwelling, subpolar gyres)
- Regions of deep seasonal mixing (eg. North Atlantic spring bloom)

Stratified regions have relatively low biomass (subtropical gyres)

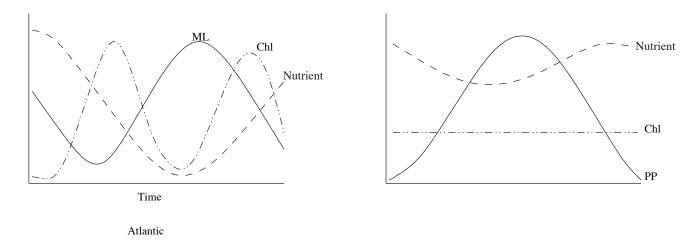


Figure 13.