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Review
 

• In last lecture we looked at conventional 
methods of measuring coordinates 

• Triangulation, trilateration, and leveling 
• Astronomic measurements using 

external bodies 
• Gravity field enters in these 

determinations 
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Gravitational potential 

• In spherical coordinates: need to solve
 

1 
r 
 2 

 r2 (rV ) 
1 

r2 sin 
 
 

(sin 
 V 
 

) 
1 

r2 sin2  
 2V 
 2  0 

• This is Laplace’s equation in spherical 
coordinates 
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Solution to gravity potential
 

• The homogeneous form of this equation 
is a “classic” partial differential 
equation. 

• In spherical coordinates solved by 

separation of variables, r=radius, 

=longitude and =co-latitude 

V (r,,)  R(r)g( )h() 
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Solution in spherical 

coordinates
 

• The radial dependence of form rn or r-n 

depending on whether inside or outside 
body. N is an integer 

• Longitude dependence is sin(m) and 
cos(m) where m is an integer 

• The colatitude dependence is more 
difficult to solve 
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Colatitude dependence 

• Solution for colatitude function 
generates Legendre polynomials and 
associated functions. 

• The polynomials occur when m=0 in  
dependence. t=cos() 

dn1Pn (t)  
2n (t 2 1)n 

n! dt n 
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Legendre Functions 

• Low order 
functions. 
Arbitrary n 
values are 
generated by 
recursive 
algorithms 

Po (t)  1 
P1(t)  t 

P2 (t)  
1 
2 

(3t 2 1) 

P3 (t)  
1 (5t 3  3t)
2 

P4 (t)  
1 (35t 4  30t 23)
8 
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Associated Legendre 

Functions
 

• The associated functions satisfy the 
following equation 

Pnm (t)  (1)m (1  t 2 )m /2 d m 

Pn (t)dt m 

• The formula for the polynomials, 
Rodriques’ formula, can be substituted 
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Associated functions
 

P00 (t) 1 
P10 (t)  t 
P11(t)  (1 t 2 )1/2 

P20 (t) 
1 
2 

(3t 2 1) 

P21(t)  3t(1 t 2 )1/2 

P22 (t)  3(1 t 2 ) 

• Pnm(t): n is called 
degree; m is order 

• m<=n.  	In some 
areas, m can be 
negative. In gravity 
formulations m=>0 

http://mathworld.wolfram.com/LegendrePolynomial.html
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Orthogonality conditions 

• The Legendre polynomials and 
functions are orthogonal: 

Pn ' (t) 
1 

1 

 Pn (t)dt  
2 

2n 1
n 'n 

Pn 'm (t) 
1 

1 

 Pnm (t)dt  
2 

2n 1 
(n  m)! 
(n  m)!

n 'n 
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Examples from Matlab 

•	 Matlab/Harmonics.m is a small matlab 
program to plots the associated 
functions and polynomials 

• Uses Matlab function: Legendre 
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Polynomials
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“Sectoral Harmonics” m=n
 

02/15/12 12.540 Lec 03 13 



Normalized 


2 
2m 1 

(n  m)! 
(n  m)! 
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Surface harmonics 

• To represent field on surface of sphere; 
surface harmonics are often used 

Ynm (,)  
2m 1 

4 
(n  m)! 
(n  m)!

Pnm ()eim 

• Be cautious of normalization. 	This is only one
of many normalizations 

• Complex notation simple way of writing 
cos(m) and sin(m) 
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Surface harmonics
 

Code to generate figure on web 
site 

Zonal ---- Tesserals ---------------------------Sectorial
 



• The gravitational potential is given by: 

V  
G 
r 

dV 

Gravitational potential 

• Where  is density, 
• G is Gravitational constant 6.6732x10-11 

m3kg-1s-2 (N m2kg-2) 
• r is distance 
• The gradient of the potential is the 

gravitational acceleration 
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Spherical Harmonic 

Expansion
 

• The Gravitational potential can be written as 
a series expansion 

GM  a
n n 

V     P (cos)C cos(m) S sin(m)
nm nm nmr r n0 m0 

• Cnm and Snm are called Stokes coefficients
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Stokes coefficients
 

• The Cnm and Snm for the Earth’s potential 

field can be obtained in a variety of ways.
 

• One fundamental way is that 1/r expands as:
 
1 dn 

  Pn (cos)
r n0 dn1 

• Where d’ is the distance to dM and d is the 
distance to the external point,  is the angle 
between the two vectors (figure next slide) 
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1/r expansion 
• Pn(cos) can be expanded in 

associated functions as function of , 
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Computing Stoke coefficients
 
• Substituting the expression for 1/r and 

converting  to co-latitude and longitude 
dependence yields: 

n4 *Pn ()  Ynm (,)Ynm (,)
2n  1 m0 

 nGdM dM dn 
*V    4    Ynm (,)Ynm (,)

r 2n  1 dn 1 
n0 m0 

The integral and summation can be reversed yielding 
integrals for the Cnm and Snm Stokes coefficients. 
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Low degree Stokes coefficients
 

• By substituting into the previous 

equation we obtain:
 

z dM  

S11  GM  
C10  GM   C11  GM  x dM 

 y dM 

GM 2C20   2z  x2  y2dM
 
2
 

C21  GM  xzdM S21  GM  yzdM 

GM GMC22   x2  y2dM S22   xydM
4 2 

02/15/12 12.540 Lec 03 22
 



    

Moments of Inertia
 

• Equation  for moments of inertia are: 
 y2  z2dM  xydM  xzdM  
  

I   xydM  z2  x2dM  yzdM  
  
  xzdM  yzdM  x2  y2dM  

• The diagonal elements in increasing 
magnitude are often labeled A B and C
with A and B very close in value 
(sometimes simply A and C are used) 
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Relationship between moments of inertia 

and Stokes coefficients
 

• With a little bit of algebra it is easy to 
show that: 

A  BC20  GM(  C)
2
 

1
C22  GM(B  A)
4 
1
S22  GMI12
2
 

C21 S21 are related to I13 and I23
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Spherical harmonics 

• The Stokes coefficients can be written 
as volume integrals 

• C00 = 1 if mass is correct 
• C10, C11, S11 = 0 if origin at center of 

mass 
• C21 and S21 = 0 if Z-axis along 


maximum moment of inertia
 

02/15/12 12.540 Lec 03 25 



Global coordinate systems
 

• If the gravity field is expanded in 
spherical harmonics then the coordinate 
system can be realized by adopting a 
frame in which certain Stokes 
coefficients are zero. 

• What about before gravity field was well 
known? 
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Summary
 
•	 Examined the spherical harmonic expansion of the 

Earth’s potential field. 
•	 Low order harmonic coefficients set the coordinate. 

–	 Degree 1 = 0, Center of mass system; 
–	 Degree 2 give moments of inertia and the orientation can be 

set from the directions of the maximum (and minimum) 
moments of inertia.  (Again these coefficients are computed 
in one frame and the coefficients tell us how to transform into 
frame with specific definition.) Not actually done in practice. 

•	 Next we look in more detail into how coordinate 
systems are actually realized. 
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