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Estimation
 

• Summary 
– First-order Gauss Markov Processes 
– Kalman filters – Estimation in which the parameters 

to be estimated are changing with time 
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Specific common processes 

• White-noise: Autocorrelation is Dirac-delta 
function; PSD is flat; integral of power under 
PSD is variance of process (true in general) 

• First-order Gauss-Markov process (one of 

most models common in Kalman filtering)
 

 xx ( )   2e   

 xx ( )  
2 2 

 2   2 
1 


 is correlation time 
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Other characteristics of FOGM
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Characteristics of FOGM
 

• This process noise model is very useful because as , 
inverse correlation time, goes to infinity (zero 
correlation time), the process is white noise 

• When the correlation time goes to infinity (–>0),
process becomes random walk (ie, sum of white
noise). 

• NOTE: Random walk is not a stationary process 
because its variance tends to infinity as time goes to
infinity 

• In the FOGM solution equation, note the damping 
term e-tx which keeps the process bounded 
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Formulation of Kalman filter
 

• A Kalman filter is an implementation of a 
Bayes estimator. 

• Basic concept behind filter is that some of the 
parameters being estimated are random
processes and as data are added to the filter, 
the parameter estimates depend on new data 
and the changes in the process noise between 
measurements. 

• Parameters with no process noise are called 
deterministic. 
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Formulation
 

• For a Kalman filter, you have measurements 
y(t) with noise v(t) and a state vector 
(parameter list) which have specified statistical 
properties. 

yt  A t xt  vt Observation equation at time t
 
xt 1  St xt  wt State transition equation
 

 vtvt
T  Vt  wtwt

T  Wt Covariance matrices 
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Basic Kalman filter steps
 

• Kalman filter can be broken into three basic 
steps 

• Prediction: Using process noise model, 
“predict” parameters at next data epoch 
– Subscript is time quantity refers to, superscript is 

data 

x̂t
t 
1  St x̂ t

t St  is state transition matrix 
Ct

t 
1  StCt

tSt
T  Wt Wt  is process noise covariance matrix 
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Prediction step
 

• The state transition matrix S projects state vector 
(parameters) forward to next time. 
– For random walks: S=1 
– For rate terms: S is matrix [1 t][0 1] 
– For FOGM: S=e -t 

– For white noise S=0 

• The second equation projects the covariance matrix of 
the state vector , C, forward in time. Contributions 
from state transition and process noise (W matrix). W 
elements are 0 for deterministic parameters 
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Kalman Gain
 

• The Kalman Gain is the matrix that allocates 
the differences between the observations at 
time t+1 and their predicted value at this time 
based on the current values of the state vector 
according to the noise in the measurements 
and the state vector noise 

K  Ct 1 
t A t 1 

T Vt 1  A t 1Ct 1 
t A t 1 

T 1 
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Update step
 

• Step in which the new observations are “blended” 
into the filter and the covariance matrix of the state 
vector is updated. 

x̂t
t 


1
1  x̂t

t 
1  K(yt 1  A t 1 x̂t

t 
1) 

t tCt
t 



1
1  Ct 1  KA t 1Ct 1 

• The filter has now been updated to time t+1 and 
measurements from t+2 can added and so on until all 
the observations have been added. 
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Aspects to note about Kalman Filters
 

• How is the filter started?  Need to start with an apriori

state vector covariance matrix (basically at time 0)
 

• Notice in updating the state covariance matrix. C, that 
at each step the matrix is decremented. If the initial 
covariances are too large, then significant rounding
error in calculation e.g., If position assumed ±100 m 
(variance 1010 mm apriori and data determines to 1
mm, then C is decremented by 10 orders of
magnitude (double precision has on 12 significant
digits). 

• Square-root-information filters overcome this problem 
but usually take longer to run than a standard Kalman 
filter. 
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“Smoothing” filters
 

• In a standard Kalman filters, the stochastic 
parameters obtained during the filter run are 
not optimum because they do not contain 
information about the deterministic parameters
obtained from future data. 

• A smoothing Kalman filter, runs the filter 
forwards (FRF) and backwards in time (BRF), 
taking the full average of the forward filter at 
the update step with the backwards filter at the 
prediction step. 
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Smoothing filters 

• The derivation of the full average can be 
derived from the filter equations. 

• The smoothing filter is 
Smoothing Kalman Gain 

B  C (C  C )
1 C from FRF, C from BRF 

x̂ st  x̂  B( x̂  x̂ ) Smoothed state vector estimate 
Ct

s  C  BC Smoothed estimate covariance matrix 
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Properties of smoothing filter
 

• Deterministic parameters (ie., no process 
noise) should remain constant with constant 
variance in smoothed results. 

• Solution takes about 2.5 times longer to run 
than just a forward filter 

• If deterministic parameters are of interest only, 
then just FRF needed. 
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Note on apriori constraints
 

• In Kalman filter, apriori covariances must be applied to 
all parameters, but cannot be too large or else large
rounding errors (non-positive definite covariance
matrices). 

• Error due to apriori constraints given approximately  
by (derived from filter equations). 

• Approximate formulas assuming uncorrelated 
parameter estimates and the apriori variance is large
compared to intrinsic variance with which parameter
can be determined. 
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Errors due to apriori constraints
 

Note: Error depends on ratio of aposteriori to apriori 
variance rather than absolute magnitude of error in apriori 
to apriori variance 
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Contrast between WLS and Kalman Filter
 

• In Kalman filters, apriori constraints must be given for all 
parameters; not needed in weighted least squares (although can 
be done). 

• Kalman filters allow zero variance parameters; can not be done is 
WLS since inverse of constraint matrix needed 

• Kalman filters allow zero variance data; can not be done in WLS 
again due to inverse of data covariance matrix. 

• Kalman filters allow method for applying absolute constraints; 
can only be tightly constrained in WLS 

• In general, Kalman filters are more prone to numerical stability 
problems and take longer to run (strictly many more parameters). 

• Process noise models can be implemented in WLS but very slow. 
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Applications in GPS
 

• Most handheld GPS receivers use Kalman 
filters to estimate velocity and position as 
function of time. 

• Clock behaviors are “white noise” and can be 
treated with Kalman filter 

• Atmospheric delay variations ideal for filter 
application 

• Stochastic variations in satellite orbits 
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