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Estimation
 

• Summary 
– Examine correlations 
– Process noise 

• White noise 
• Random walk 
• First-order Gauss Markov Processes 

– Kalman filters – Estimation in which the parameters 
to be estimated are changing with time 
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Correlations
 

• Statistical behavior in which random variables tend to 
behave in related fashions 

• Correlations calculated from covariance matrix.  
Specifically, the parameter estimates from an 
estimation are typically correlated 

• Any correlated group of random variables can be 
expressed as a linear combination of uncorrelated 
random variables by finding the eigenvectors (linear 
combinations) and eigenvalues (variances of 
uncorrelated random variables). 
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Eigenvectors and Eigenvalues 

• The eigenvectors and values of a square matrix 
satisfy the equation Ax=x 

• If A is symmetric and positive definite (covariance
matrix) then all the eigenvectors are orthogonal and
all the eigenvalues are positive. 

• Any covariance matrix can be broken down into 
independent components made up of the
eigenvectors and variances given by eigenvalues.
One method of generating samples of any random
process (ie., generate white noise samples with
variances given by eigenvalues, and transform using
a matrix made up of columns of eigenvectors. 
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Error ellipses 

• One special case is error ellipses.  Normally 
coordinates (say North and East) are correlated and 
we find a linear combinations of North and East that 
are uncorrelated. Given their covariance matrix we 
have: 
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Error ellipses 

• These equations are often written explicitly as:
 
1 

2 

 
 
 
 

1 
2 
 n 

2  e 
2   n 

2  e 
2 2 

 4  n
2 e 

2  ne 
2  


  


 

tan2  
2 ne 

 n 
2  e 

2  angle ellipse make to N axis 

• The size of the ellipse such that there is P (0-1) 
probability of being inside is 

  2 ln(1 P) 
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Error ellipses
 

• There is only 40% chance of being in 1-sigma 
error (compared to 68% of 1-sigma in one 
dimension) 

• Commonly see 95% confidence ellipse which 
is 2.45-sigma (only 2-sigma in 1-D). 

• Commonly used for GPS position and velocity 
results 
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Example of error ellipse 
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Process noise models
 

• In many estimation problems there are 
parameters that need to be estimated but 
whose values are not fixed (ie., they 
themselves are random processes in some 
way) 

• Examples include for GPS 
– Clock behavior in the receivers and satellites
 
– Atmospheric delay parameters 
– Earth orientation parameters 
– Station position behavior after earthquakes 
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Process noise models
 

• There are several ways to handle these types of 
variations: 
– Often, new observables can be formed that eliminate the 

random parameter (eg., clocks in GPS can be eliminated by 
differencing data) 

– A parametric model can be developed and the parameters of 
the model estimated (eg., piece-wise linear functions can be 
used to represent the variations in the atmospheric delays) 

– In some cases, the variations of the parameters are slow 
enough that over certain intervals of time, they can be 
considered constant or linear functions of time (eg., EOP are 
estimated daily) 

– In some case, variations are fast enough that the process can 
be treated as additional noise 
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Process noise models
 

• Characterization of noise processes 
– Firstly need samples of the process (often not easy 

to obtain) 
– Auto-correlation functions 
– Power spectral density functions 
– Allan variances (frequency standards) 
– Structure functions (atmospheric delays) 
– (see Herring, T. A., J. L. Davis, and I. I. Shapiro, 

Geodesy by radio interferometry: The application of 
Kalman filtering to the analysis of VLBI data, J. 
Geophys. Res., 95, 12561–12581, 1990. 
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Characteristics of random processes 

• Stationary: Property that statistical properties 
do not depend on time 
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Specific common processes 

• White-noise: Autocorrelation is Dirac-delta 
function; PSD is flat; integral of power under 
PSD is variance of process (true in general) 

• First-order Gauss-Markov process (one of 
most common in Kalman filtering) 
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Example of FOGM process
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Longer correlation time
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Shorter correlation time 
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Other noise processes
 

• Other noise processes can be generated with 
various algorithms (all computational expensive) 
– Most General: Given any spectrum for the noise; inverse 

Fourier transform to generate covariance function 
(careful of aliasing); find eigenvectors and eigenvalues.  
Generate white noise with variances given be 
eigenvalues, multiple by eigenvector matrix.  Resultant 
time series has spectral index properties. 

– For flicker noise, specific expressions exist for the 

covariance matrix (Ma et al., JGR, 1997)
 

– Rodrigues et al., Chaos, Solutions and Fractals, 39, 
2009 give expression of f type noise. 
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Summary
 

• Examples show behavior of different correlation 

sequences (see fogm.m on class web page).
 

• The standard deviation of the rate of change 
estimates will be greatly effected by the correlations. 

• Next class we examine, how we can make an 
estimator that will account for these correlations. 

• Homework #2 in on the class web page (due April 18, 
2012). 
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