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Estimation: Introduction
 

• Quick review of Homework #1 
• Class paper title and outline will due Monday 

March 23, 2012. 
• Overview  

– Basic concepts in estimation 
– Models: Mathematical and Statistical 
– Statistical concepts 
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Basic concepts
 

• Basic problem: We measure range and phase 
data that are related to the positions of the 
ground receiver, satellites and other 
quantities. How do we determine the “best” 
position for the receiver and other quantities. 

• What do we mean by “best” estimate? 
• Inferring parameters from measurements is 

estimation 
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Basic estimation
 

• Two styles of estimation (appropriate for 
geodetic type measurements) 
– Parametric estimation where the quantities to be 

estimated are the unknown variables in equations
that express the observables 

– Condition estimation where conditions can be 
formulated among the observations. Rarely used,
most common application is leveling where the sum
of the height differences around closed circuits
must be zero 
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Basics of parametric estimation 

• All parametric estimation methods can be 
broken into a few main steps: 
– Observation equations: equations that relate the 

parameters to be estimated to the observed
quantities (observables). Mathematical model. 

• Example: Relationship between pseudorange, receiver 
position, satellite position (implicit in ), clocks,
atmospheric and ionosphere delays 

– Stochastic model: Statistical description that 
describes the random fluctuations in the 
measurements and maybe the parameters 

– Inversion that determines the parameters values 
from the mathematical model consistent with the 
statistical model. 
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Observation model
 

• Observation model are equations relating 
observables to parameters of model: 
– Observable = function (parameters) 
– Observables should not appear on right-hand-side 

of equation 
• Often function is non-linear and most common 

method is linearization of function using Taylor 
series expansion. 

• Sometimes log linearization for f=a.b.c ie. 
Products of parameters 
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Taylor series expansion
 

• In most common Taylor series approach: 

• The estimation is made using the difference between 
the observations and the expected values based on
apriori values for the parameters. 

• The estimation returns adjustments to apriori 
parameter values 
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Linearization
 

• Since the linearization is only an 
approximation, the estimation should be 
iterated until the adjustments to the parameter 
values are zero. 

• For GPS estimation: Convergence rate is 100-
1000:1 typically (ie., a 1 meter error in apriori 
coordinates could results in 1-10 mm of non-
linearity error). 
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Estimation
 

• (Will return to statistical model shortly) 
• Most common estimation method is “least-squares” in 

which the parameter estimates are the values that
minimize the sum of the squares of the differences
between the observations and modeled values based 
on parameter estimates. 

• For linear estimation problems, direct matrix 
formulation for solution 

• For non-linear problems: Linearization or search 
technique where parameter space is searched for
minimum value 

• Care with search methods that local minimum is not 
found (will not treat in this course) 
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Least squares estimation 

• Originally formulated by Gauss. 
• Basic equations: y is vector of observations; 

A is linear matrix relating parameters to 
observables; x is vector of parameters; v is 
residual 
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Weighted Least Squares
 

• In standard least squares, nothing is assumed 
about the residuals v except that they are zero 
mean. 

• One often sees weight-least-squares in which 
a weight matrix is assigned to the residuals.  
Residuals with larger elements in W are given 
more weight. 
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Statistical approach to least squares
 

• If the weight matrix used in weighted least 
squares is the inverse of the covariance matrix 
of the residuals, then weighted least squares 
is a maximum likelihood estimator for 
Gaussian distributed random errors. 

• This latter form of least-squares is most 
statistically rigorous version. 

• Sometimes weights are chosen empirically 
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Review of statistics
 

• Random errors in measurements are 
expressed with probability density functions
that give the probability of values falling
between x and x+dx. 

• Integrating the probability density function 
gives the probability of value falling within a 
finite interval 

• Given a large enough sample of the random 
variable, the density function can be deduced 
from a histogram of residuals. 
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Example of random variables 
Code for these plots is histograms.m 
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Characterization Random Variables
 

• When the probability distribution is known, the 

following statistical descriptions are used for 

random variable x with density function f(x):
 

Expected Value < h(x) >   h(x) f (x)dx 

Expectation  x   xf (x)dx   

Variance  (x )2   (x )2 f (x)dx 

Square root of variance is called standard deviation
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Theorems for expectations
 

• For linear operations, the following theorems 
are used: 
– For a constant  <c> = c 
– Linear operator <cH(x)> = c<H(x)> 
– Summation <g+h> = <g>+<h> 

• Covariance: The relationship between random 
variables fxy(x,y) is joint probability distribution: 
  (x  )(y  )   (x  )(y  ) f (x, y)dxdyxy x y x y xy 

Correlation :   / xy xy x y 
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Estimation on moments
 

• Expectation and variance are the first and second 
moments of a probability distribution 

N 1
ˆ x  n x(t)dt
 x / N  
 
n 1 T
 

N N 

ˆ 2  )2 / N  ˆ  ( x   ( x  )2 /( N  1)x x x
 

n 1 n 1
 

• As N goes to infinity these expressions approach their 

expectations. (Note the N-1 in form which uses mean)
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Probability distributions 

• While there are many probability distributions 
there are only a couple that are common 
used: 

• 1 (x )2 /(2 2 )Gaussian f (x)  e
 2

1 
1(x )T V 1 (x )

Multivariant f (x)  2e 
(2 )n V 

2(x)  
xr / 21 x / 2eChi  squared     r (r /2)2r / 2  
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Probability distributions
 

• The chi-squared distribution is the sum of the squares 
of r Gaussian random variables with expectation 0 
and variance 1. 

• With the probability density function known, the 
probability of events occurring can be determined. 
For Gaussian distribution in 1-D; 
P(|x|<1) = 0.68; P(|x|<2) = 0.955; 
P(|x|<3) = 0.9974. 

• Conceptually, people thing of standard deviations in 
terms of probability of events occurring (ie. 68% of 
values should be within 1-sigma). 
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Central Limit Theorem 

• Why is Gaussian distribution so common? 
• “The distribution of the sum of a large number of

independent, identically distributed random variables 
is approximately Gaussian” 

• When the random errors in measurements are made 
up of many small contributing random errors, their
sum will be Gaussian. 

• Any linear operation on Gaussian distribution will 
generate another Gaussian. Not the case for other 
distributions which are derived by convolving the two
density functions. 

03/12/2012 12.540 Lec 10 22 



Summary 

• Examined simple least squares and weighted least 
squares 

• Examined probability distributions 
• Next we pose estimation in a statistical frame work 

• Some web resources for reading; 
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd4.htm 
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