
        
    
     
     
     

 
 
 

 
 
 

     
     
     
    
    
    
     

 
     

 
 
 
 
 
 

     
     
    
    
    

   
 

  
 

 
 

 
 

 
 

 
     
       
       
       
       
       
       
       
       
       
       
      
      
      
      
      
      
      
       
      
      
      
      
      
      
      
      
      
      
      
      

 

12.540 Homework #2 Due Monday, April 18, 2012
 

Matlab solution codes are given in HW02_2012.m This code uses cells and 
contains the solutions to all the questions. 

Question 1: Non-linear estimation problem
 
The data below are from a model of data of the form:
 
y(t) = Acos(2*pi*t/15+phi) + Y0 + N(t)
 
where A, the amplitude, phi the phase, and Y0 are unknown parameters to be

estimated. N(t) is Gaussian noise with standard deviations given by the +-
column (all constant in this case).
 
Data:
 

Time y(t) +-
0.0 14.02 1.00
 
1.0 9.60 1.00
 
2.0 2.98 1.00
 
3.0 0.61 1.00
 
4.0 -3.68  1.00
 
5.0 -7.19  1.00
 
6.0 -10.64  1.00
 
7.0 -9.83  1.00
 
8.0 -7.26  1.00
 
9.0 -5.24  1.00
 
10.0 2.38 1.00
 
11.0 6.14 1.00
 
12.0 9.68 1.00
 
13.0 12.23 1.00
 
14.0 14.27 1.00
 
15.0 12.51 1.00
 
16.0 9.28 1.00
 
17.0 5.23 1.00
 
18.0 1.93 1.00
 
19.0 -3.30  1.00
 
20.0 -6.41  1.00
 
21.0 -7.43  1.00
 
22.0 -9.58  1.00
 
23.0 -6.59  1.00
 
24.0 -3.76  1.00
 
25.0 2.61 1.00
 
26.0 7.37 1.00
 
27.0 10.79 1.00
 
28.0 11.75 1.00
 
29.0 13.82 1.00
 

(a) Estimate A, phi, and Y0 using a non-linear weighted least-squares estimator 
and give the values and their standard deviations. 
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(b) Reformulate the problem to be of the form:
 
y(t) = Ac*cos(2*pi*t/15) + As*sin(2*pi*t/15) + Y0 + N(t)
 
and estimate Ac, As, and Y0 using linear weighted least-squares estimator and 

give the estimates and their standard deviations. The Ac and As values are 

quadrature components. 

(c) Use the Ac and As values and their variance-covariance matrix from part (b) 

to compute the amplitude and phase and their variance-covariance matrix.  

Compare the estimated with those from part (a).
 
(d) These data are uniformly spaced in time and constant standard deviations.  

Determine the quadrature components from an FFT of the data. Compare the

results with part (b). Why are the results the same?
 

Solution 

(1a): This is a standard non-linear least squares problem that can be solved by 
Taylor series expansion. Using the non-linear equation we can write:

(1.1) y(t) = Acos(2πt /15 + φ) + Y0 + N(t) 
(1.2) y(t) = (A0 + δA)cos(2πt /15 + φ0 + δφ) + (Y0 + δY0) + N(t) 
(1.3) y0(t) = A0 cos(2πt /15 + φ0) + Y00 

(1.4) δy(t) = cos(2πt /15 + φ0)δA − A0 sin(2πt /15 + φ0)δφ + δY0 

(1.5) y(t) − y0(t) = δy(t) 
So initial values are chosen for A0, φ0 and Y00, the least squares solution uses 
the difference between the observed values and the values computed with the 
initial values (1.5), and the least squares uses the partial derivatives (or 
Jacobian) given in (1.4). Estimates of δA, δφ and δY0 are returned by the least 
squares solution. These values are added to the initial values and the process 
iterated until the estimates of δA, δφ and δY0 are small compared to their 
standard deviations. 
When initial values of A0=1, φ0=0, and Y00=0 are used, the iteration from the 
homework solution is given below. The Error entry is the sum of the ratio, 
squared, of the adjustments at each iteration to the standard deviations of the 
estimates. The iteration is continued until this sum is less than 10-4 . 

Q 1(a): Iteration  1 Error 1.854e+03 
Ampl 10.41 dA 9.40965 +- 0.26 
Phase 5.0321 dP 5.03215 +- 0.2582 
Offset 2.21 dO 2.20967 +- 0.18 

Q 1(a): Iteration 2 Error 4.101e+03 
Ampl -1.50 dA -11.91456 +- 0.26 
Phase 6.1334 dP  1.10127 +- 0.0248 
Offset 2.21 dO 0.00000 +- 0.18 

Q 1(a): Iteration 3 Error 2.470e+03 
Ampl 9.54 dA 11.04718 +- 0.26 
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Phase 1.7949 dP -4.33850 +- 0.1716 
Offset 2.21 dO -0.00000 +- 0.18 

Q 1(a): Iteration 4 Error 2.629e+03 
Ampl 2.59 dA -6.94952 +- 0.26 
Phase 0.6141 dP -1.18082 +- 0.0271 
Offset 2.21 dO 0.00000 +- 0.18 

Q 1(a): Iteration 5 Error 1.219e+03 
Ampl 11.41 dA 8.81462 +- 0.26 
Phase -0.1131 dP -0.72723 +- 0.0996 
Offset  2.21 dO -0.00000 +- 0.18 

Q 1(a): Iteration 6 Error 6.120e+02 
Ampl 9.78 dA -1.63235 +- 0.26 
Phase 0.4282 dP 0.54133 +- 0.0226 
Offset 2.21 dO -0.00000 +- 0.18 

Q 1(a): Iteration 7 Error 4.874e+01 
Ampl 11.56 dA  1.78431 +- 0.26 
Phase 0.4543 dP 0.02613 +- 0.0264 
Offset 2.21 dO 0.00000 +- 0.18 

Q 1(a): Iteration 8 Error 3.279e-02 
Ampl 11.56 dA 0.00273 +- 0.26 
Phase 0.4503 dP -0.00404 +- 0.0223 
Offset 2.21 dO 0.00000 +- 0.18 

Q 1(a): Iteration 9 Error 1.351e-07 
Ampl 11.56 dA 0.00009 +- 0.26 
Phase 0.4503 dP 0.00000 +- 0.0223 
Offset 2.21 dO -0.00000 +- 0.18 
Notice here that the initial iterations are quite unstable because of rapid changes
in the phase.  Trying different initial values for A can change this behavior 
dramatically.  When angles are part of a non-linear inversion, the initial 
amplitudes should be approximately correct.  Also notice that the Y0 term is a 
linear term and it converges within the first iteration.  This behavior is common 
although, I don't know if it universal. (In this case, the non-linear problem can be
formulated as a linear one (Q1b) and this might explain this behavior. 

Although not asked, we can compute the coefficients from Q1b and the results
are shown below.  
Cosine 10.41 +- 0.26 
Sine -5.03 +- 0.26 

(1.b) The linear estimation problem is solved by cosine into a cosine and sine
component using the cosine sum rule. 
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Acos(2πt /15 + φ) = Acos(φ)cos(2πt /15) − Asin(φ)sin(2πt /15) 
We now estimate Ac=Acos(φ) and As=Asin(φ) and the problem is linear in Ac and 
As.  The results of this estimation (in one iteration because the problem is linear) 
are: 

Q 1(b): Linear estimates
Offset 2.21 +- 0.18 
Cosine 10.41 +- 0.26 
Sine -5.03 +- 0.26 

(1.c) These estimates can be transformed to amplitude and phase using the non-
linear equations for the estimates and the linearized equations for propagating
the variance-covariance matrix 
A = Ac2 + As2 

φ = tan−1(−As / Ac) 
$dA' $ Ac / A As / A '$dAc' 
& ) = & )& )
%dφ( %−As / A2 Ac / A2(%dAs(
Substituting the results and using propagation of covariances yields results
exactly the same as those obtained from the non-linear estimates. 

Q 1(c): Linear estimates transformed to amplitude and phase
Amplitude 11.56 +- 0.26 
Phase 0.4503 +- 0.0223 rad 

(1.d) The Matlab FFT routine can be used and based on the normalization used
by this FFT, the results can be directly extracted as the 3rd elements in the FFT. 
Care is needed depending on the FFT routine as to whether the spectrum is
wrapped around zero frequency and the normalization used for the number of 
data in the FFT. 
Q 1(d): FFT Estimates, Linear and Non-linear estimates
Cosine: FFT 10.409649 Lin 10.409649 NonL 10.409649 
Sine : FFT -5.032150 Lin -5.032150 NonL -5.032150 
The results agree with the least squares estimates because the length of data 
and frequency are commensurate and this the frequency is one of the Fourier 
frequencies.  These frequencies are orthogonal and thus when used in an 
estimation (with constant data variances), the normal equations are diagonal and
thus the problem can be solved one frequency at a time.  The results are the 
same as shown above.  

Question 2: Linear estimation problem with regular and sequential estimation. 
Using the data set listed below: 
(a) Fit a linear regression (y=ax+b) to the data using standard weighted least 
squares 
(b) Compute the chi-squared per degree of freedom of the postfit residuals.  Is 
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this value consistent with the variations expected from random variations? 
(c) Divide the data into two parts (first and last 5 data points) and use sequential 
estimation to determine a and b. 
(d) Find the weighted mean y (the weighted mean is the weighted least squares 
solution to the equation y = b). Compare this estimate of b with the estimates of 
the a' when x is shifted such that estimates of a' and b' are uncorrelated (i.e., the 
solution to y=a'*(x-xo)+b' where xo is selected such that the estimates of a' and b' 
are uncorrelated. 

Data: 
X Y +-
1 5.759 1.050 
2 -2.389  1.080 
3 -10.512  0.975 
4 -18.220  0.974 
5 -19.745  1.075 
6 -24.429  1.227 
7 -32.521  1.025 
8 -36.411  0.817 
9 -43.655  0.989 
10 -50.882  0.842 

Solution: 

(2.a) Straightforward problem using the standard weighted least squares 
solution. Output from Matlab is: 

Q 2 (a) : Estimates:
Offset 9.01 +- 0.69 
Rate -5.89 +- 0.11 

(2.b) There are two ways to solve this problem. The most straightforward is to 
compute the postfit residuals and directly compute χ2. The other more elegant 
way to compute the so-called prefit χ2 (This is the χ2 calculation using the original 
non-fitted data) and then compute the change to  from the parameter estimates. 
This change is simply the solution vector dotted with ATWy where y is the original 
data. Both calculations are shown below and generate identical results. The 
advantage of the latter formulation is that the postfit residuals themselves never 
need to be computed which can be a major advantage for large data sets.
Q 2 (b): Chi**2/f
Chi**2/f from postfit residuals 4.1221 for 8 dof 
Chi**2/f from prefit residuals 4.1221 for 8 dof 
The probability that could be this large due to random error can be computed 
from the chi-squared distribution (see http://mathworld.wolfram.com/Chi-Squared
Distribution.html). 
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(Be careful with the gamma function definition differences between this site and 
Matlab; you need to verify the integral bounds being used in the incomplete 
expressions).
Probability that chi**2 would be greater than this due to
random error: 0.0062 % 
There is a small probability that the noise in the data is consistent with the error 
bars (in fact the true noise is 50% larger than the errors (see matlab code). 

(2.c) This is a straightforward application of sequential estimation. The important 
step here is to use the covariance matrix of the two sets of estimates when using 
them the obtaining the combined results. Results from the matlab code are given 
below. The small differences from 1.a are due to rounding error.
Q 2 (c) : Estimates for data 1-5:
Offset 11.08 +- 1.11 
Rate -6.75 +- 0.33 
Q 2 (c) : Estimates for data 6-10:
Offset 13.99 +- 2.67 
Rate -6.44 +- 0.32 
We then use the two pairs of estimates above with the full covariance matrices
from the least squares solution to estimate the offset and rate parameters.  In this 
case the partials matrix is a pair of unit matrices because the parameters and
data are the same quantities.
Q 2 (c) : Estimates from combined data:
Offset 9.01 +- 0.69 
Rate -5.89 +- 0.11 
Differences from 1(a): -1.7053e-13 4.6185e-14 

(2.d) A method of making the parameter estimates uncorrelated is to modify the 
time argument for the offset estimate. In the Matlab code this method is used to 
determine the time the offset is referred to (ie., a Dt shift so that the offset refers 
to a time at the “center” of the data. These estimates are given below.
Q 2 (d) : Estimates of uncorrelated parameters by shifting 
time 5.8602: 
Offset-shift -25.5087 +- 0.3119 
Rate-shift   -5.8903 +- 0.1058 
Covariance 1.9326e-18 
Compute the weighted mean. The solution code shows the method. This is a 
least squares solution with the observation equation y=x. Notice that the 
weighed mean matches the offset estimate at the “uncorrelated time”.
Q 2 (d): Weighted Mean -25.5087 +- 0.3119 
Compare with Offset-shift above 

Question 3: Example of using differenced data 
Using the data below: 
(a) Estimate A given the model that y(t) = A*sin(X)+C(t) where C(t) is a randomly 
varying function of time. 
(b) Instead of estimating C(t) at each time, use a differencing method to eliminate 
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C(t) from the estimation.  (Hint: Use propagation of variances to determine the 
covariance matrix of the differenced data. 
(c) Determine A by treating C(t) as correlated data noise (i.e., the C(t) noise is 
that same at each time and therefore highly correlated at each time but 
independent between times). 
(d) Compare the results from the "brute force", differencing, and data noise 
approaches (Hint: When solved correctly they all generate the same result). 

Data: 
T X Y +-
1 1.1000 44.1946 1.00
 
1 0.3000 36.8838 1.00
 
1 -0.1900  32.0616  1.00
 
2 1.2000 -0.1419  1.00
 
2 0.1000 -5.9336  1.00
 
2 -0.1600      -9.1461  1.00
 
3 1.3000 -7.8164  1.00
 
3 -0.1000     -19.3260  1.00
 
3 -0.1100     -21.5875  1.00
 
4 1.4000  35.3201 1.00
 
4 -0.3000  24.3602 1.00
 
4 -0.0400  26.2854 1.00
 
5 1.5000 -34.5531  1.00
 
5 -0.5000     -47.7803  1.00
 
5 0.0500 -41.8605  1.00
 
6 1.6000 0.6797 1.00
 
6 -0.7000     -13.2281  1.00
 
6 0.1600 -6.1792  1.00
 
7 1.7000 1.1492 1.00
 
7 -0.9000     -17.6524  1.00
 
7 0.2900 -8.0827  1.00
 
8 1.8000 25.4898 1.00
 
8 -1.1000  6.2613 1.00
 
8 0.4400 16.9865 1.00
 
9 1.9000 16.7815 1.00
 
9 -1.3000      -4.4243  1.00
 
9 0.6100 11.4170 1.00
 
10 2.0000 -14.0549  1.00
 
10 -1.5000     -37.0554  1.00
 
10 0.8000 -14.9231  1.00
 

Solution 
(3.a) The brute estimates are straightforward and yields. The postfit chi-squared 
is also computed and shown below.
Q 3 (a) Brute force estimates
X value Estimate 10.2884 +- 0.2765 Error 0.2884 
Clock offsets 1 34.2912 +- 0.5846 Error 0.3061 
Clock offsets 2 -8.0663 +- 0.5829 Error 0.6161 
Clock offsets 3 -18.8289 +- 0.5815 Error 0.7904 
Clock offsets 4 26.4263 +- 0.5805 Error -1.0007 

7



   
     
   

   

  

   

  

     

   

         
      
      
      
      
      

 
 

 

 
 

      
  

 

 
 

 
      
  

 

 
 

      
  

 
 

 

Clock offsets 5 -43.3461 +- 0.5797 Error -0.5993 
Clock offsets 6 -8.0076 +- 0.5793 Error -0.2432 
Clock offsets 7 -9.8904 +- 0.5791 Error 0.9086 
Clock offsets 8 14.5017 +- 0.5793 Error 0.0186 
Clock offsets 9 6.0193 +- 0.5796 Error -0.4000 
Clock offsets 10   -24.1688 +- 0.5803 Error -1.1223 
Chi^2 per degree of freedom 2.0926; f = 19, Probability 0.35 % 

(3.b) For the difference solution, a difference operator is created that differences 
the data between epochs 1-2 and 1-3.  In this solution, the complete difference 
operator is created but it could have been for each measurement time separately 
(and sequential). This sequential approach would be method used for a large 
data set. The important step here, which can again be done sequentially, is to 
form the covariance matrix of the differenced observations. Using the 
differenced observations to estimate just the one parameter yields and again with 
postfit chi-squared, exactly the same result.
Q 3 (b) Differenced data result
Solution from differnced data :  10.2884 +- 0.2765 
Difference from full solution : 0.0000e+00 +- 0.0000e+00 
Chi^2 per degree of freedom 2.0926; f = 19, Probability 0.35 % 
As an example below, I also include the results if the covariance matrix in not 
used. The result is similar, but certainly not the same.  Notice also that the sigma 
estimate is optimistic.
Q 3 (b) Differenced data result with no-correlations
Solution from differenced data: 10.2321 +- 0.1833 
Difference from full solution : -5.6268e-02 +- -9.3220e-02 
When the differenced data covariance matrix is used, the results are identical. In 
more complicated geometries this result holds if all the non-dependent 
differences are found. In some geometries other combinations are needed in 
addition to simple differences are needed to represent the data. 
(3.c) We can also solve this problem but estimating just the A value, using the 
complete data and by treating the clock term as noise. We add a correlated 
contribution to the data covariance matrix and then solve for just A.  In the 
solution we use 10000 as the standard deviation of the clock "noise" and the 
results generated are the same as the other two solution. The chi^2 per degree 
of freedom is also the same when 19 degrees of the freedom are used.  (There 
are only 20 "non-zero" eigenvalues in the weight matrix minus the 1 parameter 
that was estimated resulting in 19 degrees of freedom.).
Q 3 (c) White noise model result
Solution from white noise : 10.2884 +- 0.2765 
Difference from full solution : -1.6023e-09 +- 5.3453e-10 
Chi^2 per degree of freedom 2.0926; f = 19, Probability 0.35 % 
Chi^2 from prefit 39.7590 and from postfit residuals 39.7590 
The weight matrix from the white-noise clock solution is shown below revealing 
its rather simple structure. 
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(3.d) All results, including the statistical parameters, are exactly the same for all 
three analysis methods used. Notice in this also, that although the data noise is 
consistent with the data variances, the chi^2/f probability is only 0.35%.  
Changing the seed at the top of the program will change this to more typical high 
probability values. 
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