Land Component of GCM

e Must contain heat and moisture balance
equations and a snow cover model

 GCMs have been shown to be very sensitive
to surface albedo and moisture
characteristics



Ocean Component of GCM

e Similar governing equations as atmosphere except:
— Oceans are liquid
— Ocean basin geometry is more complex

 Many important features in the ocean are too small
to be realized in today’s models

— Gulf Stream, Kuroshio currents less than 1° wide



Sea Ice Models

* Seaice:
— Increases surface albedo
— Inhibits exchanges of heat, moisture, and momentum
— Alters local salinity

* Assume ice forms if sea surface temperature < -2°C

* Also should predict movement of ice



Image courtesy of NOAA.




Image courtesy of NOAA.



Image courtesy of NASA.




Unresolved physical processes must be
handled parametrically

* Convection
 Thin and/or broken clouds
* Cloud microphysics

e Aerosols and chemistry (e.g.
photochemical processes, ozone)

e Turbulence, including surface fluxes
* Seaice

 Land ice

* Land surface processes



Process Models and Parameterization

eBoundary Layer

*Clouds
Stratiform
Convective

eMicrophysics

Deep convective
Medium convective

clouds

4

.
Shallow convective
clouds

Image courtesy of NASA.

) Mesoscale
No Convective horizontal
precipitation rain uniform rain

Image by MIT OpenCourseWare.
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Thin and broken clouds

Altocumulus 0



Image courtesy of NASA.

Altostratus
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Image courtesy of NASA



Parameterization of Clouds

Cloud amount (fraction) as simulated by 25 atmospheric GCMs

Image by MIT OpenCourseWare.

12



Low Clouds Over the Ocean
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Image courtesy of climatescience.gov.
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Sensitivity of relative humidity
to assumptions about cloud
microphysical processes
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Sensitivity to microphysics increases with vertical
resolution of model

== rh sensitivity (25 mb)

= = rh sensitivity (100 mb)
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Numerical
convergence of water
vapor profiles
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Figure 8. Tephigram plotting equilibrium temperature (lines on right) and moisture
(lines on left) for the Emanuel model using 10 vertical layers (dotted lines), 20 vertical
layers (dashed lines), 30 vertical layers (dot-dash lines), 40 vertical layers (long dash
lines). 50 vertical layers (solid lines), in addition to the 10 layers placed above 100 hPa.
The lines for the highest resolution at 50 layers are enhanced. 17



GCMs have difficulty handling water vapor. (Sun and Held, 1996)
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Image courtesy of NOAA.



This image has been removed due to copyright restrictions.



How Do We Know If We Have It Right?

* Very few tests of model as whole: annual and diurnal
cycles, weather forecasts, 20" century climate,
response to orbital variations

 Fundamentally ill-posed: More free parameters than
tests

e Alternative: Rigorous, off-line tests of model
subcomponents. Arduous, unpopular: Necessary but
not sufficient for model robustness: Model as whole
may not work even though subcomponents are
robust
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Change, Figure 9.5. Cambridge University Press. Used with permission.
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Ensemble of climate models, Scenario Alb
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Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change, Figure 10.5. Cambridge University Press. Used with permission.
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Root-mean-square error
in zonally and annually
averaged SW radiation
(top) and LW radiation
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http://www.resiliencetv.fr/?p=11115

This image has been removed due to copyright restrictions. Please see the similar image
on http://www.cawcr.gov.au/bmrc/ocean/staff/ahz/BAM_Report/BAM_fig7.gif.
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http://www.cawcr.gov.au/bmrc/ocean/staff/ahz/BAM_Report/BAM_fig7.gif

This image has been removed due to copyright restrictions.
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Observed time mean, zonally averaged ocean temperature

depth (m)

(black contours), and model-mean minus observed
temperature (colors) for the period 1957-1990
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Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report

of the Intergovernmental Panel on Climate Change, Figure 8.9. Cambridge University Press. Used with permission.
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