Climate Sensitivity, Forcings, And
Feedbacks



Forcings and Feedbacks in the Climate System

Changes in the Atmospher: Changes in the
Composition, Circulation Hydrological Cycle
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Forcings and Feedbacks

Consider the total flux of radiation through the top of the
atmosphere:
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Each term on the right can be regarded as function of the surface
temperature, T, and many other variables x;:
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By chain rule,
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Now let’s call the N process a “forcing”, Q:
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Note that feedback factors do NOT add linearly in
their collective effects on climate sensitivity



Examples of Forcing:

Changing solar constant
Orbital forcing

Changing concentrations of non-interactive
greenhouse gases

Volcanic aerosols
Manmade aerosols
Land use changes



Solar Sunspot Cycle
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Satellite measurements of solar flux

Total Solar Irradionce
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Figure 2.16. Parcentage change in monthly values of the total solar irradiance
composites of Willson and Mordvinoy (2003; WM2003, violet symbols and line) and
Frohlich and Lean (2004, FL2004, green solid ling).

Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change, Figure 2.16. Cambridge University Press. Used with permission.
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X-Ray Flux

This image has been removed due to copyright restrictions. Please see the
image on page http://sidstation.loudet.org/03-solar-activity/data/flux.png.
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Normal solar cycle variations in solar radiation

This image has been removed due to copyright restrictions. Please see Foukal, et al. "Variations in
Solar Luminosity and their Effect on the Earth's Climate". Nature 443 (2006): 161-6. The image is
also on page http://blogs.edf.org/climate411/wp-content/files/2007/05/solar_energy.jpg.
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Total Solar Irradiance
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Figure 2.17. Reconstructions of the total solar imadiance time series starting as
early as 1600. The upper envelope of the shaded regions shows imadiance variations
ansing from the 11-year activity cycle. The lower envelope is the total iradiance
reconstructed by Lean (2000), in which the long-term trend was inferred from bright-
ness changes in Sun-like stars. In comparison, the recent reconstruction of ¥, Wang
etal (2005) is based on solar considerations alone, using a flux transport model to
simulate the long-term evolution of the closed flux that generates bright faculae.

Climate Change 2007: The Physical Science Basis. Working Group I Contribution to
the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,
Figure 2.17. Cambridge University Press. Used with permission.
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Eccentricity Cycle (100 k.y.)
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Obliquity Cycle (41 k.y.)
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Precession of the Equinoxes (19 and 23 k.y.)
This image has been removed due to copyright restrictions.

Please see the photo on page http://www.detectingdesign.
com/milankovitch.html.

Northern Hemisphere tilted toward the sun at aphelion.

Milutin Milankovié¢, 1879-1958

Image by MIT OpenCourseWare.
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Climate Forcing and Response
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Strong Correlation between High Latitude Summer Insolation
and Ice Volume

This image has been removed due to copyright restrictions. Please see Figure 2E on page
http://www.people.fas.harvard.edu/~phuybers/Doc/integrated_science2006.pdf.
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This image has been removed due to copyright restrictions. Please see the image
on page http://en.wikipedia.org/wiki/File:Carbon_History_and_Flux_Rev.png.
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Climate Change 2007: The Physical Science Basis. Working Group I Contribution
to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change, Figure TS.2. Cambridge University Press. Used with permission.
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Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change, Figure 6.1. Cambridge University Press. Used with permission.

CO and Climate
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Recent History of Volcanic Eruptions
Volcanic Aerosol Total Visible Optical Depth
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Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change, Figure 2.18. Cambridge University Press. Used with permission.




Global Anthropogenic Sulfur Emissions
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Figure 1-Global sulfur dioxide emissions from this study (thick line) and several other recent estimates (see text). Note
that the Lefohn er al. estimate does not include all anthropogenic emissions sources. References not shown on the cart
are: GEIA (Benkovitz et al.1996); EDGAR 2.0 (Olivier er al 1996); EDGAR 3.2 (Olivier and Berdowski, 2001):
EDGAR-HYDE (Van Aardenne er al. 2001); and SRES (Nakicenovic and Swart 2000).

Image courtesy of US government. 21



Variation with Time of Natural Climate Forcings:

Sclar irradiance farcing (W m™)
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Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change, Figure 6.13. Cambridge University Press. Used with permission.
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Examples of Forcing Magnitudes:

* A 1.6% change in the solar constant,
equivalent to 4 Wm~, would produce about
1°C change in surface temperature

* Doubling CO,, equivalent to 4 Wm™, would
produce about 1°C change in surface
temperature



Contributions to net radiative forcing
change, 1750-2004:

Radiative Forcing Terms
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Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change, Figure 2.20. Cambridge University Press. Used with permission.



Examples of Feedbacks:

Water vapor

Ice-albedo

Clouds

Surface evaporation
Biogeochemical feedbacks



Estimates of Climate Sensitivity
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Examples of feedback magnitudes:

* Experiments with one-dimensional radiative-
convective models suggest that holding the
relative humidity fixed,

Fron | A | < owm2k
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This, by itself, doubles climate sensitivity; with other
positive feedbacks, effect on sensitivity is even larger




lce-Albedo Feedback
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Image by MIT OpenCourseWare.
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Budyko-Sellers type
energy-balance model
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Feedback Parameter (W m™ C)

Feedbacks in Climate Models
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Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change, Figure 8.14. Cambridge University Press. Used with permission.
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This image (published on Journal of Climate by the American Meteorological
Society) is copyright © AMS and used with permission.

Equilibrium temperature change associated with the Planck response and the various
feedbacks, computed for 12 CMIP3/AR4 AOGCMs for a 2 x CO, forcing of reference (3.71 W
m~2). The GCMs are sorted according to ATe..

From Dufresne and Bony, J. Climate, 2008
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Cloud Radiative Forcing

A
2.0 —
1.0 —
N 0.0 —_
£ _
; -
-1.0 —
-2.0 —
3.0 _

I I I O L I I I L I L L L L O

21 3 11121016 7 2015 9 8 14 6 5 4 23 22 19 17 18
Model ID number

Image by MIT OpenCourseWare.

Changes in global mean cloud radiative forcing (W m-2) from individual models
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