12.010 Homework #5 Solution Due Thursday, December 01, 2011
Question (1): (25-points) (a) Write a Matlab M-file which generates a table of error
function (erf) and its derivatives for real arguments (z) between -3 and 3 in steps of 0.25.
The error function is defined by the equation below (but is rarely evaluated by
performing the integration).

(see http://mathworld.wolfram.com/Erf.html for information the error function)

The values in the table should be given with 5 decimal places. The table should have
headers explaining what the columns are. Explain how you designed the M-file and give
an example of the output.

(b) How would you change this M-file if 10 significant digits were required?

Matlab M-file should also be supplied

Solution:

The solution to this problem is easy in Matlab because the Erf function is built in. In the
solution we use Matlab’s vector operations to form the entries for the table in one
single line. By using the correct transpose on the results we are able to print the table
with one print statement. We also added to the solution plots of the function and its
derivative.

The solution is available at

http://geoweb.mit.edu/~tah/12.010/HW05 01 2011.m

Below is shown in the output from the program for 5 significant digits. To increase the
number of significant digits, the format for the table simply needs to be changed. All of
the calculations were done with double precision and therefore no change to the
variables needs to be made.

12.010 HWO05 Q01: Table of Erf and its derivative

| Arg x | Erf(x) | d(Erf)/dx |
-3.000 -0.99998 0.00014
-2.750 -0.99990 0.00059
-2.500 -0.99959 0.00218
-2.250 -0.99854 0.00714
-2.000 -0.99532 0.02067
-1.750 -0.98667 0.05277
-1.500 -0.96611 0.11893
-1.250 -0.92290 0.23652
-1.000 -0.84270 0.41511
-0.750 -0.71116 0.64293
-0.500 -0.52050 0.87878

-0.250 -0.27633 1.06001
0.000 0.00000 1.12838
0.250 0.27633 1.06001
0.500 0.52050 0.87878
0.750 0.71116 0.64293
1.000 0.84270 0.41511
1.250 0.92290 0.23652
1.500 0.96611 0.11893
1.750 0.98667 0.05277
2.000 0.99532 0.02067
2.250 0.99854 0.00714
2.500 0.99959 0.00218
2.750 0.99990 0.00059

| 3.000 | 0.99998 | 0.00014 |

Erf
[| ——— dErf/dx

Erf dErf/dx

-3 -2 -1 0 1 2 3
Argument

Figure 1. Plot of the Erf function and its derivative.

Question (2): (25-points).

Write an M-file that reads your name in the form <first name> <middle name> <last
name> and outputs the last name first and adds a comma after the name, the first
name, and initial of your middle name with a period after the middle initial. If the names
start with lower case letters, then these should be capitalized. The M-file should not be
specific to the lengths of your name (ie., the M-file should work with anyone’s name.

As an example. An input of

thomas abram herring
would generate:
Herring, Thomas A.

Solution:
This solution is also easy in Matlab using the tolower and toupper functions. The code
also detects whether two or three names have been given and changes the output

accordingly.

Solution is available at
http://geoweb.mit.edu/~tah/12.010/HW05 02 2011.m

12.010 HW 05 Q2:
Enter Name (first middle last) thomas abram herring
Herring, Thomas A.

Question (3): (50-points) Write a Matlab M-file that will compute the motion of a
bicyclist and the energy used cycling along an oscillating, sloped straight-line path. The
path followed will be expressed as
H(x)=Sx+Asin2ax/A)+ BcosQax/ A)

where H(x) is the height of the path above the starting height, S is a slope in m/m, A and
B are amplitudes of sinusoidal oscillations in the path. The wavelength of the oscillations
is A. The forces acting on the bicycle are:

Wind Drag ~ F; =1/2A,C,pV?

Rolling Drag F, = M,gC,
where A, is the cross-sectional area of the rider, Cy is the drag coefficient, r is the density
of air and V is the velocity of the bike. For the rolling drag, My is the mass of the rider

and bike, g is gravitation acceleration and Cy is rolling drag coefficient.

The bicyclist puts power into the bike by pedaling. The force generated by this power is
given by

Rider force F,=P./V
where Fy is the force produced by the rider, Py is power used by the rider and V is velocity
that the bike is traveling (the force is assumed to act along the velocity vector of the
bike). Your M-file can assume that the power can be used at different rates along the
path. The energy used will be the integrated power supplied by the rider. Assume that
there is maximum value to the rider force.

Your code should allow for input of the constants above (path and force coefficients).
The M-file can assume a constant power scenario and constant force at low velocities.

As a test of your M-file use the following constants to compute:
(a) Time to travel and energy used to travel 10 km along a path specified by

5$=0.001, A=5.0 m, B=0.0 m and A= 2km, with constant power use of Py
=100Watts and a maximum force available of 20N.

(b) The position and velocity of the bike tabulated at a 100-second interval.

(c) Add graphics to your M-file which plots the velocity of the bike as a function of
time and position along the path.

Assume the following values
Cqg=0.9

Cr=0.007

Ar=0.67m’

p =1.226 kg/m’
g =9.8m/s’

M, = 80 kg

In this case, the Matlab M-file will not be of the type used for fortran and C/C++. Look at
the documentation on ODExx where xx is a pair of number for Ordinary Differential
Equation solutions.
Your answer to this question should include:

(a) The algorithms used and the design of your M-file

(b) The Matlab M-file with your code and solution (I run your M-file).

(c) The results from the test case above.

Solution:

The solution to this problem is also quite easy in Matlab. We use the OED 45 1st order
differential equation solver. To use this function we also have a function that computes
the acceleration at the bike and another function that is the event detector that
determines when the bike reaches 10 km distance. For ease of coding, the variables that
control the characteristics of the bike are saved as globals. We also use an input dialog
box to both set the defaults and allow the user to change the values at runtime.

Also included in the solution is an animation and plot of the motion of the bike. To have
the animation runs smoothly we change the output interval of the differential equation
solver so that we generate more points then those that given in the standard 100
seconds separated values. There are some interesting bugs in Matlab for plotting the
velocity vectors. The quiver option is used for this plot but in the current release of
Matlab the arrowheads are extremely large and are turned off in the plots. Also the
automatic scaling of the vectors does not generate reasonable length vectors, and so in
these plots we manually set the scale factor.

To compute the energy used during a bike ride, we simply added the derivative of the
energy to the differential equations. This way the total energy was integrated
automatically in the solution and could be output to the table as shown below.

The solution M-files are available at:

http://geoweb.mit.edu/~tah/12.010/HW05 03 2011.m

http://geoweb.mit.edu/~tah/12.010/bikeacc.m

http://geoweb.mit.edu/~tah/12.010/bikehit.m

http://geoweb.mit.edu/~tah/12.010/banimate.m

The table and figures below show the results for the default solution.

12.010 HW 05 Q 3: Bike simulation

Time X pos Z pos X Vel Z Vel Energy

(sec) (m) (m) (m/s) (m/s) (Joules)
0.000 0.0000 0.0000 0.0000 0.0000 0.00
100.000 79.9607 1.3228 1.4894 0.0242 1599.43
200.000 306.7804 4.4136 3.3662 0.0335 6136.26
300.000 826.7200 3.4173 6.7979 -0.0845 15406.88
400.000 1513.7483 -3.4812 5.8778 0.0099 25406.88
500.000 1951.5589 1.1930 2.9595 0.0489 33908.48
600.000 2202.3092 5.1692 2.6551 0.0362 38924.12
700.000 2608.2191 7.3210 5.8263 -0.0247 46828.92
800.000 3292.5203 -0.6831 6.8901 -0.0588 56828.92
900.000 3834.4703 1.3482 3.8829 0.0568 66438.93
1000.000 4117.1190 5.9128 2.3536 0.0368 72092.64
1100.000 4427.6762 9.2952 4.5307 0.0206 78304.19
1200.000 5045.7397 4.3271 7.2502 -0.1055 88249.44
1300.000 5681.1563 1.4650 4.9724 0.0471 98248.16
1400.000 6034.8791 6.5772 2.4814 0.0412 105321.74
1500.000 6293.6398 10.2743 3.3172 0.0348 110497.49
1600.000 6802.7335 9.7025 6.7096 -0.0791 119675.95
1700.000 7492.6695 2.4890 5.9908 0.0038 129675.95
1800.000 7941.2097 7.0155 3.0363 0.0499 138331.57
1900.000 8193.2972 11.0363 2.6051 0.0362 143373.96
2000.000 8588.5246 13.3858 5.7243 -0.0190 151121.55
2100.000 9268.9477 5.5189 6.9633 -0.0657 161121.55
2200.000 9821.1684 7.1456 3.9935 0.0571 170809.56
2255.202 10000.0000 9.9890 2.6506 0.0443 174386.65

Time : 2255.202, Velocity 2.6506 0.0443

Energy used: 174386.65 Joules, 41.64 kcals
To show animation: banimate(ta,ya)

>> banimate(ta,ya)

1 5 T T T T T T T T / T T

10

T
% 2
Il

Height (m)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Distance (m)

-10

Figure 2: Trajectory of the bike along with vectors showing its velocity (green lines). Due
to poor scaling in Matlab, no arrowheads are shown.

8 T T T T

7 - -
g °f 1
E L]
> 5
©
S 4} .
()
>
T 3r T
o

2 - -

1k 4

o 1 1 1 1

0 500 1000 1500 2000 2500
Time (sec)

Figure 3: Velocity as a function of time for the bike.

MIT OpenCourseWare
http://ocw.mit.edu

12.010 Computational Methods of Scientific Programming
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

