12.010 HW 4 2011

This latest version of Mathematica has some issues with copying and pasting
equations and graphics from Microsoft Word. It also seems not to be able to
reproduce subscripts and superscripts from word, which previously was able to
do. It is not clear if the incompatibility is from the Microsoft Word or the
Mathematica side. This is another indication of how changes in versions of

software can have unintended consequences.

(Question 1): (25-points) (a) Write Mathematica NoteBook which generates a
table of error function (erf) and its derivatives for real arguments (z) between
-3 and 3 in steps of 0.25. The error function is defined by the equation
below (but is rarely evaluated by performing the

integration).

(see http://mathworld.wolfram.com/Erf.html for information the error function
)

The values in the table should be given with 5 decimal places. The table
should have headers explaining what the columns are. Explain how you
designed the NoteBook and give an example of the output.

(b) How would you change this NoteBook if 10 significant digits were
required?

Mathematica NoteBook should also be supplied

e Solution: Given that the error function is defined in Mathematica themost tricky
part of the this problem is formarting the ourput. There are many ways to approach
the output problem.

http://mathworld.wolfram.com/Erf.html

2 HWO04_11.nb
In[1]:=
Off [General::spelll];
(+ Stops message about head looking like a commandsx)
head = {"Argument", "Erf[z]", "dErf|[z]/dz"};
derflarg] := 2/Sqrt[Pi] xExXp[-xXx"2];
ents =
Table[{N[SetAccuracy[x, 10], 3],
N[SetAccuracy [Erf [x], 10], 6],
N|[SetAccuracy|[derf[x], 6], 6]}, {x, -3, 3, 0.25}];
full = Insert[ents, head, 1];
TableForm|[full, TableAlignments —» Right]
Out[6]/TableForm=
Argument Erf[z] dErf[z]/dz
-3.00 -0.999978 0.00014
-2.75 -0.999899 0.00059
-2.50 -0.999593 0.00218
-2.25 -0.998537 0.00714
-2.00 -0.995322 0.02067
-1.75 -0.986672 0.05277
-1.50 -0.966105 0.118930
-1.25 -0.922900 0.23652
-1.00 -0.842701 0.41511
-0.750 -0.711156 0.64293
-0.500 -0.520500 0.87878
-0.250 -0.276326 1.06001
0.x10°10 0.x10°10 1.12838
0.250 0.276326 1.06001
0.500 0.520500 0.87878
0.750 0.711156 0.64293
1.00 0.842701 0.41511
1.25 0.922900 0.23652
1.50 0.966105 0.118930
1.75 0.986672 0.05277
2.00 0.995322 0.02067
2.25 0.998537 0.00714
2.50 0.999593 0.00218
2.75 0.999899 0.00059
3.00 0.999978 0.00014

e (b) Output of table to 10 deciminal places.

HWO04_11.nb

In[22]:= Off[General::spell1]; (x Stops message about head looking like a commands)
head = {"Argument", "Erf[z]", "dErf[z]/dZz"};
derflarg_] := 2/Sqrt[Pi] =« Exp[—-x"2];
ents = Table[{N[SetAccuracy[x, 10], 3], N[SetAccuracy[Erf[x], 10], 10],

N[SetAccuracy[derf[x], 10], 10]}, {x, —3, 3, 0.25}];
full = Insert[ents, head, 1];
TableForm(full, TableAlignments — Right]
Out[26)/TableForm=

Argument Erf[z] dErf[z]/dz
-3.00 -0.999977910 0.000139253
-2.75 -0.999899378 0.0005862772
-2.50 -0.999593048 0.002178284
-2.25 -0.998537283 0.0071423190
-2.00 -0.995322265 0.0206669854
-1.75 -0.986671671 0.0527749959
-1.50 -0.9661051465 0.1189302892
-1.25 -0.9229001283 0.2365211224
-1.00 -0.8427007929 0.415107497
-0.750 -0.7111556337 0.642931069
-0.500 -0.5204998778 0.878782579
-0.250 -0.2763263902 1.060014129
0.x10710 0.x10710 1.128379167
0.250 0.2763263902 1.060014129
0.500 0.5204998778 0.878782579
0.750 0.7111556337 0.642931069
1.00 0.8427007929 0.415107497
1.25 0.9229001283 0.2365211224
1.50 0.9661051465 0.1189302892
1.75 0.986671671 0.0527749959
2.00 0.995322265 0.0206669854
2.25 0.998537283 0.0071423190
2.50 0.999593048 0.002178284
2.75 0.999899378 0.0005862772
3.00 0.999977910 0.000139253

Question (2): (25-points). Write a NoteBook that reads your name in the form
<first name> <middle name> <last name> and outputs the last name first and adds

a comma after the name, the first name, and initial of your middle name with a

HWO04_11.nb

period after the middle initial. If the names start with lower case letters, then
these should be capitalized. The NoteBook should not be specific to the lengths of
your name (ie., the NoteBook should work with anyone’s name.

As an example. An input of

thomas abram herring

would generate:

Herring, Thomas A.

e This problem is not too bad to solve. This solution works in >5.0 Mathematica and

does explicitly some things such as splitting a string apart that are now Mathemat-
ica commands (StringSplit).

HWO04_11.nb

In[271:= (+ Define a function that will convert chararacter of a string to upper case x)

confirstfa_] := StringReplacePart[a, ToUpperCase[StringTake[a, {1}]], {1, 1}];
(+ Get the name from the usersx)

inname = InputString["Enter Name (first, middle, last) "];

(+ Convert whole string to lower casex)

fullname = ToLowerCase[inname];

(+ Now get the list of blanks in the stringx)

posblanks = StringPosition[fullname, " "];

(+ Get the position of first blanksx)

posfirst = Extract[Extract[posblanks, 1], 1];

firsthame = StringTake[fullname, posfirst —1];

firsthame = confirst[firsthame]; (x Use our confirst routine x)

(+» Get Middle Name)

posmid = Extract[Extract[posblanks, 2], 1];

midinit = StringTake[fullname, {posfirst+ 1, posfirst+ 1}];

midinit = confirst[midinit];

(+ Get Last Name x)

lasthame = StringTake[fullname, {posmid + 1, StringLength[fullname]}];
lastname = confirst[lasthname];

(+ Output the string =)

finalname = lastname <> ", " <> firstname <>
outline = "Input name " <> inname <> " converted to: " <> finalname;
(+ Output the resultsx)

Print[outline];

<> midinit <> ".";

Input name thomas abram herring converted to: Herring, Thomas A.

Write a Mathematica NoteBook that will compute the motion of a bicyclist and the
energy used cycling along an oscillating, sloped straight-line path. The path

followed will be expressed as

H(x)=S8x+ Asin(2ax/A) + Bcos(Rmx/A)

HWO04_11.nb

where H(x) is the height of the path above the starting height, S is a slope in m/m,
A and B are amplitudes of sinusoidal oscillations in the path. The wavelength of

the oscillations is A. The forces acting on the bicycle are:
Wind Drag ~ F, =1/2A,C,0V?
Rolling Drag F, =M, gC,

where Ar is the cross-sectional area of the rider, Cd is the drag coefficient, r is the
density of air and V is the velocity of the bike. For the rolling drag, Mr is the mass

of the rider and bike, g is gravitation acceleration and Cr is rolling drag coefficient.

The bicyclist puts power into the bike by pedaling. The force generated by this
power is given by

Rider force F,=P./V

where Fr is the force produced by the rider, Pr is power used by the rider and Vis
velocity that the bike is traveling (the force is assumed to act along the velocity
vector of the bike). Your NoteBook can assume that the power can be used at
different rates along the path. The energy used will be the integrated power

supplied by the rider. Assume that there is maximum value to the rider force.

Your code should allow for input of the constants above (path and force
coefficients). The NoteBook can assume a constant power scenario and constant

force at low velocities.

As a test of your NoteBook use the following constants to compute:

(a) Time to travel and energy used to travel 10 km along a path specified by

$=0.001, A=5.0 m, B=0.0 m and A= 2km, with constant power use of Pr =100Watts

HWO04_11.nb

and a maximum force available of 20N.
(b) The position and velocity of the bike tabulated at a 100-second interval.
(c) Add graphics to your NoteBook which plots the velocity of the bike as a

function of time and position along the path.

Assume the following values
Ccd=0.9

Cr =0.007

Ar=0.67 m2

0 =1.226 kg/m3

g =9.8m/s2

Mr =80 kg

In this case, the Mathematica NoteBook will not be of the type used for fortran
and C/C++. Look at the documentation on NDSolve for this problem.
Your answer to this question should include:

(a) The algorithms used and the design of your NoteBook

(b) The Mathematica NoteBook with your code and solution (I run your
NoteBook).
(c) The results from the test case above.

e There are several ways of approaching this problem and two solution are presented
below. The problem itself is dvided into a number of cells that allow parts of prob-
lem to be re-execuated. There two basic steps to the solution:

(1) Use NDSolve to solve the second order differential equation that describes the
problem. The solution effectively becomes an equation that returns values at any
specified time.

HWO04_11.nb

(2) Use FindRoot to determine when the bike has reached the end of track.

e Set up the defaults first. This cell should be evaluated

Clear[t, x, xd, hx, vx, xp, xd, th, dacc];

cd = 0.90;
(xPrint["Parameter cd ",cd]x)
cr = 0.007;

area = 0.67; (* m"2 «x)

mass = 80; (x kg x)

prider = 100; (» Power Wattsx)
fmax = 20
slope = 0.001;
as = 5.0;

bs = 0.0;
lambda = 2000;
tracklen = 10000;
outint = 100.0;

(» Define the acceleration functions we will needx)
grav = 9.8 ;

rhoair = 1.226;

Print["Default Values set"]

Default Values set

e Now allow the user to enter values of there own. This cell does not need to be
evaluated if the default values are desired.

HWO04_11.nb

In[82]:= tracklen = Input["Length of track (km) ", tracklen/1000] *
1000.0;
slope = Input|["Track slope ", slope];
as = Input["Sin Amplitude (m) ", as];
bs = Input["Cos Ampliude (m)", bs];
lambda = Input["Periodic wavelength (km) ", lambda/1000] *
1000.0;
mass = Input|["Rider+Bike Mass (kg) ", mass];
area = Input|["Rider Area (m"2) ", area]l;
cd = Input["Drag Coefficient ", cd];
cr = Input["Rolling friction coefficient ", crj;
outint = Input["Output interval (s)", outint];
e Now set up the force model equations
In[92]:=

theta[xp | :=
ArcTan[slope + as *Cos[2 «*Pixxp/ lambda] » 2 « Pi / lambda -
bs *Sin[2 x Pi »xp / lambda] * 2 « Pi / lambda]
htrack[xp] := slopexXp + as*Sin[2 Pi«xp/lambda] +
bs *xCos [2 »Pi+xp/ lambda] ;
(» Second derivative of surface for computing
cenripical acceleration «)

dy2dx2 [xp] := -as*Sin[2+Pixxp/lambda] (2 «Pi/ lambda) "2 -
bs xCos[2 +xPixxp/lambda] = (2 «Pi/ lambda) " 2;
vmag[xd , zd] := Sqrt[xd"2+zd"2];

(* Acceleration due to drag =*)

dragx[xd , zd] := -rhoair xvmag[xd, zd] ~area % cd
xd/ (2 xmass) ;
dragz[xd , zd] := -rhoair xvmag[xd, zd] area xcd

zd/ (2 xmass) ;
(# Rolling force. This act along surface =*)
rollx[xp] := -gravsxcr xCos|[theta[xp]];
rollz[xp] := -gravxcrxSin[theta[xp]];
(*# Gravity force acting perpendicular to surface *)
gravx[xp] := -gravx*Cos[theta[xp]] xSin[theta[xp]];
gravz[xp] := +gravsxCos|[theta[xp]]"2;
(# Centripetal acceleration x)
(» Could divide by Sqrt[(l+Tan[theta[xp]]"2)"3]]
factor to curvature term. This change does not
seem to make solution closer to track shapex)

HWO04_11.nb

centx[xp , xd_, zd_] :
(xd"2 +2d"2) »Sin[theta[xp]] »dy2dx2[xp];
centz[xp , xd_, zd_] :
(xd"2 +2zd"2) »Cos [theta[xp]] »dy2dx2 [xp];
(»x This commented code has expression for radius of
curvature
centx[xp ,xd_,zd_] :=
(xd"2+2d"2) «Sin[theta[xp]] *
dy2dx2 [xp]/Sqrt[(1+Tan[theta[xp]]"2)"3];
centz[xp ,xd ,zd] :=
(xd"2+2zd"2) xCos [theta[xp]] *
dy2dx2 [xp]/Sqrt[(1+Tan[theta[xp]]"2)"3];
*)
(x To see the effects of the centripetal force,
remove the comments below
centx[xp ,xd ,zd] :=0;
centz[xp ,xd_,zd] :=0;

*)

(* Now the rider force =)
ridrx([xp , xd_, zd] :=
(Min[If[vmag[xd, zd] > 0, prider /vmag[xd, zd], fmax],
fmax] /mass) » Cos [theta[xp]];
ridrz[xp_, xd_, zd_] :=
(Min[If[vmag[xd, zd] > 0, prider /vmag[xd, zd], fmax],
fmax] /mass) » Sin[theta[xp]];
Print [Acceleration functions Set]

Acceleration functions Set

e The following cell can be used to test that the acceleration functions above gener-
ate numeric results when called with distance and velocity. This test is useful if
NDSolve does not return answer.

10

HWO04_11.nb 11

2=) 4x = 1500.; txv = 2.0; tzv = 0.01;

Print["Slope ", theta[dx], " 2nd derivative ",
dy2dx2[dx], " Height ", htrack[dx]]
Print["Drag X ", dragx[txv, tzv], " Z ", dragz[txv, tzv]]
Print["Roll X ", rollx[dx], " Z ", rollz[dx]]
Print["Gravity X ", gravx|[dx], " Z ", gravz[dx]]
Print["Centripetal X ", centx[dx, txv, tzv], " Z2 ",
centz[dx, txv, tzv]]
Print["Rider X ", ridrx[dx, txv, tzv], " Z2 ",
ridrz[dx, txv, tzv]]

Slope 0.001 2nd derivative 0.000049348 Height -3.5
Drag X -0.0184822 z -0.0000924109

Roll X -0.0686 Z -0.0000686

Gravity X -0.00979999 Z 9.79999

Centripetal X 1.97397x107 2z 0.000197397

Rider X 0.25 2z 0.00025

e Now set up the solution for NDSolve. There are two equations in the x and z accel-
erations and initial conditions for x and z and x' and z' at time zero. The solution is
set to solve for a maximum of 10000 seconds. This is OK for the standard case but
may need to be modified for other longer running cases.

The evaluaton of the solution is saved for x and z positions and z and z velocities.
(NDSolve contains examples of setting up these solutions.

We can then find the length of the time need by solving the equation xp[t]-tracklen
== 0. This is not with FindRoot.

1"

12

HWO04_11.nb

In[177]:=

solution =
NDSolve |
{x''[t] == ridrx[x[t], x'[t], 2'[t]] +dragx[x'[t]
rollx[x[t]] +gravx[x[t]] + centx[x[t], x'[t]
z''[t] = ridrz([x[t], x'[t], z'[t]] +dragz[x']
rollz[x[t]] + gravz[x[t]] - grav +
centz([x[t], x'[t], z"[t]], x[0] ==0, 2[0] =0,
x'[0] =0, 2"'[0] =0}, {x, 2z}, {t, 0, 10000}];

:= First[Evaluate[x[t] /. solution]];

First|[Evaluate[z[t] /. solution]];

First [Evaluate[x'[t] /. solution]];
First[Evaluate[z'[t] /. solution]];

(» Compute the error in the distance =x)

endt = t /. FindRoot[xp[t] - tracklen-=-0, {t, 1, 3000.0}];

[Ty T |
oo
1l

[A—
oo
1l

(» Now integrate to get work done x)
work = NIntegrate[mass Sqrt[xv[t] "2 +zv[t] 2] *
Sgrt[ridrx[xp[t], xv[t], zv[t]] "2 +
ridrz[xp[t], xv[t], zv[t]]"2], {t, 0, endt},
AccuracyGoal - 4] ;

Print["Time to reach end of track ", endt,
xv([endt], " m/s"];

Print["Work done ", work,
" kcal"];

sec, Speed ",

Joules, ", work/4.1868/10"3,

NiIntegrate::ncvb
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections
in t near {t} = {678.279}. NIntegrate obtained 174398.48726962117"
and 0.39321119853291564 " for the integral and error estimates. >
Time to reach end of track 2255.17 sec, Speed 2.65009 m/s

Work done 174 398. Joules, 41.6544 kcal

e The case above gives an example of how tricky Mathematica can be in telling you
what it is actually doing. In the integration above for work a numerical rounding
error message is printed. The message suggests there is some problem around 678
seconds. The cell below divides the calculation into 2 parts normally split at around
678 seconds and in this case no numerical error warning is printed. It’s not at all
clear why the program is behaving this way.

12

HWO04_11.nb

13

In[166]:= tt = 678.279;

worksplit =
NIntegrate[mass » Sqrt[xv([t] "2 + zv[t] " 2] *
Sgrt[ridrx[xp[t], xv[t], zv[t]] "2 +
ridrz[xp[t], xv[t], zv[t]]"2], {t, 0, tt}] +
NIntegrate[mass x Sqrt[xv[t] "2 + zv[t] " 2] *

Sqgrt[ridrx[xp[t], xv[t], zv[t]] "2 +

Print ["Work computed in one step ", work,

" and split at time ", tt, " " , worksplit,

. Difference in results ", work - worksplit];

Work computed in one step 174399. and split at time
678.279 174399.. Difference in results 0.

ridrz[xp[t], xv[t], zv[t]] " 2], {t, tt, endt}];

e Final output for version A (full solutions)

MO8SE= 1 print["12.010 HW 4: Mathematica Bike Problem"];
Print["Solution Parameters"];
Print["Track Length ", tracklen/1000.0, " km"];
Print["Track Slope ", slope, " Sin Cos ", as, " ",

bs, " m, Lambda ", lambda/1000., " km"];
Print ["Rider Power ", prider, " Watts, Max Force
fmax, " N"];
Print["Time to reach end of track ", endt, " sec,
xv[endt], " m/s"]
Print ["Work done by rider ", work,
work /4.1868 /1073, " kcal"]

n

n

Joules, ",

12.010 HW 4: Mathematica Bike Problem

Solution Parameters

Track Length 10. km

Track Slope 0.001 Sin Cos 5. 0. m, Lambda 2. km

Rider Power 100 Watts, Max Force 20 N

Time to reach end of track 2255.17 sec, Speed 2.65009 m/s

Work done by rider 174398. Joules, 41.6544 kcal

13

14

Speed

n

14

14

HWO04_11.nb

e Add some graphics to the results: Velocity versus time, Z position versus X posi-
tion, and difference from track shape. The latter plot shows how well our integra-

tion matched the actual shape of the track.

In[241]:=

Out[241]=

Plot[xv[t], {t, 0, endt},

AxesLabel —» {"Time

AspectRatio > 1 /1]

ParametricPlot|[{xp[t] /1000,
{t, 0, endt},
AxesLabel » {"X position

AspectRatio > 1/ 1]

Velocity

U

(m/s)

"Velocity
ParametricPlot[{xp[t] /1000,

AxesLabel -» {"X position (km)",

(km) ",

(m/s)"}1]
zpl[t]}, {t, 0, endt},
"Z position(m)"},

"Error in Z

(zp[t] - htrack[xp[t]]) »1000.},

(mm) "},

500

1000

14

1500

2000

' Time

HWO04_11.nb 15

Z position (m)

10

Out[242]=

X position
2 \/4 6 8 10

15

16 HWO04_11.nb

6 8 10

X position

Out[243]=

e We now use table and table form to have to put the positions and velocities as
a function of the interval selected by the user. (The default interval is 100

seconds). To generate the table with 100s output, and to add the final value, we
generate the table in two parts and save the table in a list called outlst. We use the
append function to join the two tables together.

16

HWO04_11.nb 17

Inf2741:= outlst = Table[{t, xp[t], zp[t], xv[t], zv[t]},
{t, 0, endt, outint}];
(» Now add the final entry to the tabe; x)
outlst =
Append[outlst,
Transpose [Table[{t, xp[t], zp[t], xv[t], zv[t]},
{t, endt, endt, outint}]]];
TableForm|[outlst,
TableHeadings —
{None, {"Time (s)", "X Pos (m)", "Z pos (m)",
"X vel (m/s)", "Z Vel (m/s)"}}]
Out[276]/TableForm=
Time (s) X Pos (m) Z pos (m) X Vel (m/s) Z Vel (m/s)
0 0. 0. 0. -5.29396 x 10723
100 79.9901 1.32329 1.48869 0.0241386
200 306.763 4.41341 3.36696 0.0335387
300 826.797 3.41531 6.79761 -0.0845564
400 1513.81 -3.48135 5.87698 0.00988077
500 1951.68 1.19559 2.95947 0.0489105
600 2202.42 5.17194 2.65422 0.0361969
700 2608.52 7.32075 5.8297 -0.0247871
800 3292.9 -0.685554 6.88819 -0.0586485
900 3834.83 1.35511 3.88251 0.0568391
1000 4117.37 5.91931 2.35353 0.0368374
1100 4428.12 9.30101 4.53331 0.0204786
1200 5046.56 4.31778 7.24973 -0.105412
1300 5681.7 1.47426 4.97372 0.0471862
1400 6035.25 6.58758 2.48085 0.0412101
1500 6294.17 10.2845 3.32052 0.0347469
1600 6803.7 9.69517 6.71443 -0.0793262
1700 7493.54 2.49435 5.98646 0.00407604
1800 7941.44 7.0264 3.03341 0.0498764
1900 8193.43 11.0479 2.60451 0.0361917
2000 8588.77 13.3952 5.72489 -0.0190286
2100 9269.22 5.52648 6.96317 -0.0655712
2200 9821.37 7.16001 3.99206 0.0570797
2255.17 10000. 9.99951 2.65009 0.0442763

e Alternative solution, Here we solve the one dimensional problem which is basi-
cally the roller coaster solution that keeps the bike on the ground. In the Fortran
and C-versions we computed the forces along the sloped surface and integrated
horizontal motions from the motion along the slope. If a similar approach is fol-
lowed here, then we need expressions for height and slope as functions of the dis-

17

18 HWO04_11.nb

tance along the sirface. These could be derived given that we have the eqautions.
A simpler solution to solve for the horizontal motion and compute the z-motion
consistent wth staying on the track. The z-motion is needed because drag and rider
force depend on the total velocity not just the horizontal velocity.

We use the same constants above but we re-define the accerations and NDSolve
here.

In[284]:= theta[xp_] :=

ArcTan[slope + asxCos[2 «Pixxp/ lambda] 2 « Pi/ lambda -
bs *Sin[2 * Pi »xp / lambda] * 2 « Pi / lambda]

(» Get total velocity given running on track)
vtot[xd , xp] := Sqgrt[xd”2 + (xdxTan[theta[xp]]) "2];

dacc[xd , xp] := -cdxrhoair xvtot[xd, xp] "2 *
area/ (2 »mass) ;
racc[th] := -gravscrxCos[th];

facc[xd , xp_] :=

Min[If[vtot[xd, xp] > 0, prider /vtot[xd, xp], fmax], fmax] /
mass

gacc[th] := -grav*Sin[th];

Print["1-D accelerations set"]

1-D accelerations set

18

HWO04_11.nb 19

(» Set up differential equations to be be solved,
x[t] is horizontal position,
There is still a problem here with along track versus
horizontal distance
Here we use y for the dependent variable=x)

solnb =
NDSolve |
{y''[t] =

(daccly'[t], y[t]] + gacc[theta[y[t]]] +
racc[theta[y[t]]] + facc[y'[t], y[t]]) *
Cos[theta[y[t]]],
y[0] =0, y'[0] = 0.0}, vy, {t, 0.0, 10000.0},
AccuracyGoal - 10];
py[t] := Evaluate[y[t] /. solnb];
vy[t] := Evaluate[y'[t] /. solnb];
(# Compute the error in the distance «x)
endb = t /. FindRoot[py[t] - tracklen-==0, {t, 1, 3000.0}];
work = NIntegrate[mass x facc[First[vy[t]], First[py[t]]] *
vtot [First[vy[t]], First[py[t]]], {t, 0, endt}];
Print["Time to reach end of track ", endb, " sec, Speed ",
First[vy[endt]], " m/s"];
Print["Work done ", work,
" kcal"];

n

Joules, ", work/4.1868/10"3,

Time to reach end of track 2255.05 sec, Speed 2.64848 m/s

Work done 174 405. Joules, 41.6558 kcal
MBTEE N piot[{vy[t], Sqrt[xv[t] 2 +zv[t] “2]}, {t, 0, endb},
PlotRange —» All,
AxesLabel » {"Time (sec)", "Velocity (m/s)"}]
Plot[(vy[t] - Sqgrt[xv([t] "2 +zv[t]"2]) 1000, {t, 0, endb},
PlotRange — All,
AxesLabel » {"Time (sec)", "Diff Vel (mm/s)"}]

19

20 HWO04_11.nb

Velocity (m/s)

Out[311]= sk

Diff Vel (mm/s)

4 =
2 =
Out[312]= [
) L L f\ L L L L L L L " L L L L L L L L
50 1000

1500 200

! Time

e Now output table of values

20

HWO04_11.nb

In[308]:= outlld = Table[{t, py[t], vy[t]}, {t, 0, endb, outint}];
(+ Now add the final entry to the tabe; »)
outlld =

Append|[outlld,
Transpose [Table[{t, py[t], vy[t]},
{t, endb, endb, outint}]]];
TableForm|[outlld,
TableHeadings -
{None, {"Time (s)", "X Pos (m)", "X Vel (m/s)"}}]
Out[310]/TableForm=
Time (s) X Pos (m) X Vel (m/s)
0 0. 0.
100 80.0296 1.48938
200 306.907 3.36857
300 827.102 6.79856
400 1514.08 5.87554
500 1951.82 2.95863
600 2202.58 2.65548
700 2608.89 5.83165
800 3293.34 6.88692
900 3835.08 3.8804
1000 4117.54 2.35409
1100 4428.5 4.537
1200 5047.16 7.25006
1300 5682.12 4.97145
1400 6035.47 2.48028
1500 6294.5 3.32362
1600 6804.39 6.7169
1700 7494.16 5.98318
1800 7941.75 3.03121
1900 8193.74 2.6065
2000 8589.47 5.72868
2100 9270.08 6.96082
2200 9821.86 3.98801
2255.05 10000. 2.65031

21

MIT OpenCourseWare
http://ocw.mit.edu

12.010 Computational Methods of Scientific Programming
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

