12.010 Homework #3 Due Thursday, November 03, 2011

Question (1): (25-points) (a) Write, compile and run a C/C++ program which generates a
table of error function (erf) and its derivatives for real arguments (z) between -3 and 3 in
steps of 0.25. The error function is defined by the equation below (but is rarely
evaluated by performing the integration).

(see http://mathworld.wolfram.com/Erf.html for information the error function)

The values in the table should be given with 5 decimal places. The table should have
headers explaining what the columns are. Explain how you designed the program and
give an example of the output.

(b) How would you change this program if 10 significant digits were required?

C/C++ source code should also be supplied

Solution:

The algorithm used here is the same as that used in the Fortran solution. However we
have added here the ability to pass the desired accuracy of the calculation through the
runstring. The default accuracy is 1e-6. Since the erf function is part of the math library
(-Im option need when compiled and linked), this version of the program outputs the
difference between the series expansion and the math library erf function.

The source code is http://geoweb.mit.edu/~tah/12.010/HW03 01 11.c

Example output:
TAHComputer[167] gcc HW03 01 1l.c -o HWO03 01 11
TAHComputer[168] HWO03 01 11

Argument ERF d (ERF) /dx ERFC Error
-3.000 -0.99998 0.00014 -0.99998 -1.43e-07
-2.750 -0.99990 0.00059 -0.99990 -1.45e-07
-2.500 -0.99959 0.00218 -0.99959 5.31e-08
-2.250 -0.99854 0.00714 -0.99854 1.30e-07
-2.000 -0.99532 0.02067 -0.99532 -1.10e-07
-1.750 -0.98667 0.05277 -0.98667 l1.46e-07
-1.500 -0.96611 0.11893 -0.96611 5.00e-08
-1.250 -0.92290 0.23652 -0.92290 2.24e-08
-1.000 -0.84270 0.41511 -0.84270 1.37e-08
-0.750 -0.71116 0.64293 -0.71116 1.17e-08
-0.500 -0.52050 0.87878 -0.52050 1.43e-08
-0.250 -0.27633 1.06001 -0.27633 -2.02e-10
0.000 0.00000 1.12838 0.00000 0.00e+00
0.250 0.27633 1.06001 0.27633 2.02e-10
0.500 0.52050 0.87878 0.52050 -1.43e-08
0.750 0.71116 0.64293 0.71116 -1.17e-08

1.000 0.84270 0.41511 0.84270 -1.37e-08
1.250 0.92290 0.23652 0.92290 -2.24e-08
1.500 0.96611 0.11893 0.96611 -5.00e-08
1.750 0.98667 0.05277 0.98667 -1.46e-07
2.000 0.99532 0.02067 0.99532 1.10e-07
2.250 0.99854 0.00714 0.99854 -1.30e-07
2.500 0.99959 0.00218 0.99959 -5.31e-08
2.750 0.99990 0.00059 0.99990 1.45e-07
3.000 0.99998 0.00014 0.99998 1.43e-07

As in the Fortran code, this code takes an accuracy value so the number of digits to be
output would need to be changed.

Question (2): (25-points).

Write a program that reads your name in the form <first name> <middle name> <last
name> and outputs the last name first and adds a comma after the name, the first
name, and initial of your middle name with a period after the middle initial. If the names
start with lower case letters, then these should be capitalized. The program should not
be specific to the lengths of your name (ie., the program should work with anyone’s
name.

As an example. An input of

thomas abram herring

would generate:

Herring, Thomas A.

Hints:

You might look for toupper and tolower as part of the ctype.h header file.

Solution:

This solution is similar to the Fortran code solution. Care should be taken in using scanf
for input. In this code fscanf is used so that the maxium number of bytes to be read can
be specified. The code also checks the number of characters read but by using fscanf
the number should never exceed the maximum allowed.

The solution code is http://geoweb.mit.edu/~tah/12.010/HW03 02 11.c

Example run.
TAHComputer[170] gcc HWO03_02_1l.c -o HWO03_02 11
TAHComputer[171] HWO03_02_ 11

Enter your names (First, middle, last) tHoMaS aBrAm hErrIng

kkhkkhkhkhkhkkhhkhkhkkhhkhkhkkhkki*k

* Herring, Thomas A. *
khkkkkhkhkhkhkhkhhkhkkkkkkhkhkik*k*

Question (3): (50-points) Write a C/C++ program that will compute the motion of a
bicyclist and the energy used cycling along an oscillating, sloped straight-line path. The
path followed will be expressed as

H(x)=Sx+Asin2ax/A)+ BcosRQax/ A)

where H(x) is the height of the path above the starting height, S is a slope in m/m, A and
B are amplitudes of sinusoidal oscillations in the path. The wavelength of the oscillations
is A. The forces acting on the bicycle are:

Wind Drag ~ F; =1/2A,C,pV?

Rolling Drag F, = M,gC,
where A, is the cross-sectional area of the rider, Cyq is the drag coefficient, r is the density
of air and V is the velocity of the bike. For the rolling drag, My is the mass of the rider

and bike, g is gravitation acceleration and Cy is rolling drag coefficient.

The bicyclist puts power into the bike by pedaling. The force generated by this power is
given by

Rider force F =P /V
where Fy is the force produced by the rider, Py is power used by the rider and V is velocity

that the bike is traveling (the force is assumed to act along the velocity vector of the
bike). Your program can assume that the power can be used at different rates along the
path. The energy used will be the integrated power supplied by the rider. Assume that
there is maximum value to the rider force.

Your code should allow for input of the constants above (path and force coefficients).
The program can assume a constant power scenario and constant force at low velocities.

As a test of your program use the following constants to compute:

(a) Time to travel and energy used to travel 10 km along a path specified by
5$=0.001, A=5.0 m, B=0.0 m and A= 2km, with constant power use of Py
=100Watts and a maximum force available of 20N.

(b) The position and velocity of the bike tabulated at a 100-second interval.

Assume the following values
Cqg=0.9

Cr=0.007

Ar=0.67m’

p =1.226 kg/m’

g =9.8m/s’

M, =80 kg

Your answer to this question should include:
(a) The algorithms used and the design of your program

(b) The C/C++ program source code (I will compile and run your programs).
(c) The results from the test case above.

Solution:

This solution is very close to the Fortran HW03_03_11-1D solution (i.e., the bike is
treated like a roller coaster and the problem is solved in 1-D while accounting for the
difference between the sloped and horizontal distances.

As in the Fortran code a header file is used (CBike.h) and this contains definitions and
global variables that are accessible in all functions. Prototype function lines are included
at the top of the source code.

Notice some of the changes that needed to be made to the code. In particular, we
needed to change the function call to nint in the Fortran code to ceil in the C code, and
we needed to change the abs call to fabsl. Specifically here if we left the abs call as
coded, the wrong answers were generated because abs is the integer values only. We
also changed the input so that the user can simply say no and keep the default values.
We also coded the input so that the same use of / as in Fortran code was used.

The solution is http://geoweb.mit.edu/~tah/12.010/HW03 03 1D 11.cand
http://geoweb.mit.edu/~tah/12.010/CBike.h

Example with defaults.
TAHComputer[204] gcc HWO03 03 1D 1l.c -o HWO03 03 1D 11
TAHComputer[205] HWO03 03 1D 11

12.010 Program to solve Bike Motion problem
Given track characteristics and rider/bike properties
the time, energy and path are computed.

Do you want to change defaults (y/n) n

PROGRAM PARAMETERS

+++++++H+

Length of track 10.000 km and error 10.0 mm

Track Slope 0.001 Sin and Cos amplitudes 5.00 0.00 (m) and wavelenghth
2.00 (km)

Rider/Bike Mass 80.00 (kg), Area 0.670 (m**2), Drag and rolling
Coefficient 0.90 0.0070

Rider Power 100.00 (Watts) and max force 20.00 (N)

Output Interval 100.00 (s)

+++++ 4
Step 1.000000 Times 2255.063413 2255.063412 Delta (ms) 0.001372

o* Time X pos S_pos S_vel Energy
o* (sec) (m) (m) (m/s) (Joules)
o 0.000 0.0000 0.0000 0.0000 0.00
0] 100.000 80.0297 80.0407 1.4896 1600.80

ool oNeoNeoNeoNeoNoNoNoNoNoNoNoNoNoNeoNoNoNoNoNe)

200.000
300.000
400.000
500.000
600.000
700.000
800.000
900.000
1000.000
1100.000
1200.000
1300.000
1400.000
1500.000
1600.000
1700.000
1800.000
1900.000
2000.000
2100.000
2200.000
2255.063

306.9129

827.1168
1514.1006
1951.8144
2202.5693
2608.8907
3293.3369
3835.0718
4117.5262
4428.4800
5047.1325
5682.1018
6035.4481
6294.4797
6804.3476
7494.1230
7941.7253
8193.7065
8589.4172
9270.0071
9821.8172

10000.0004

Time to travel 10.000 km,
Rider Energy
Kinetic

Final Velocity

174490.72 Joules,
281.02 Joules
2.651 m/sec

306.9453
827.1622
1514.1889
1951.9321
2202.7186
2609.0514
3293.5471
3835.2993
4117.7907
4428.7645
5047.4485
5682.4419
6035.8262
6294.8846
6804.7643
7494 .5844
7942.2147
8194.2280
8589.9508
9270.5896
9822.4164

10000.6222

2255.06 seconds,

3.3689
6.7990
5.8755
2.9589
2.6557
5.8317
6.8874
3.8807
2.3544
4.5370
7.2508
4.9717
2.4806
3.3237
6.7171
5.9834
3.0317
2.6066
5.7284
6.9615
3.9886
2.6506

0.63 hrs

41676.393 Calories

6138.93
15413.85
25413.85
33917.06
38932.85
46847.61
56847.61
66461.32
72111.21
78330.75
88281.45
98281.13

105348.84
110530.07
119715.19
129715.19
138353.52
143393.84
151148.99
161148.99
170834.47
174490.72

http:174490.72
http:174490.72
http:170834.47
http:161148.99
http:151148.99
http:143393.84
http:138353.52
http:129715.19
http:119715.19
http:110530.07
http:105348.84
http:98281.13
http:88281.45
http:78330.75
http:72111.21
http:66461.32
http:56847.61
http:46847.61
http:38932.85
http:33917.06
http:25413.85
http:15413.85

MIT OpenCourseWare
http://ocw.mit.edu

12.010 Computational Methods of Scientific Programming
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

