12.010 Homework #2 Due Thursday, October 20, 2011

Question (1): (25-points) (a) Write, compile and run a fortran program which generates
a table of error function (erf) and its derivatives for real arguments (z) between -3 and 3
in steps of 0.25. The error function is defined by the equation below (but is rarely
evaluated by performing the integration).

(see http://mathworld.wolfram.com/Erf.html for information the error function )

The values in the table should be given with 5 decimal places. The table should have
headers explaining what the columns are. Explain how you designed the program and
give an example of the output.

(b) How would you change this program if 10 significant digits were required?
Fortran source code should also be supplied

The main decision to be made here is how to implement the evaluation of the error
function, Erf. The derivative is a simple expression and poses no challengers.
Additional considerations are the formatting of the table but this is relatively easy in
Fortran.

The http://mathworld.wolfram.com/Erf.html gibes the Maclaurin series for evaluating
the Erf function

o n_2n+l

Erf(s)= 2 3 CD200
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This formula will work for all values of the argument z (which can be complex as well).
To implement this equation we note the sum is to infinity, which will take a long time to
compute. So we need to decide on the number of terms to include. As we look at the
expression, for |z|<1 the series is well behaved in that as n goes to infinity, 2™ will go
to zero (i.e., the terms get smaller and smaller). However for |z|>1, 2™ will go to
infinity as n goes to infinity. These ever increasing values are reduced in size by the n!in
the denominator. The magnitude of n! could cause problems. n! grows rapidly and will
lead to over flow of integer*4 size limits when enough terms in the series. Sample
calculations of the series suggest at for z-3.0, n should be 32 to obtain 10 accuracy in
the calculation. Factorial(32) is 2.6x10°> which 25-orders of magnitude larger than the
maximum value possible with integer*4. Therefore although factorial in an integer, it
will need to be saved a real*8 in this calculation.

Another aspect of this series is the alternating sign (-1)". For arguments greater than 1,
the series will be summing and subtracting numbers that are large and this can
introduce rounding errors. (For example, for z=3, n=7 generates a contribution of 189.8



to the series. The terms for n=8 tends to cancel this term). Hence if large arguments
are to be used, an alternative to the Maclaurin series should be considered. The
Wolfram site gives some alternative expressions for large arguments.

In gfortran and gcc, there is an intrinsic erf function and if the user routine called erf is
used, a warning is printed saying that there is a conflict between the user routine and
the intrinsic routine. In gfortran, the intrinsic routine is used and not the user version
which is rather surprising. (Normally, user routines over-ride system functions but since
this an intrinsic function conflict this rule must not apply). On a unix system, man erf
will tell you about the routine.

Code design:

The major issue with accuracy of the series calculations and factorial magnitude were
discussed above. The major components of the code are to

(1) Output table headers so that the user knows what is being tabulated.

(2) Functions to evaluate erf and its derivative. In my implementation, the erf functions
evaluates how many terms are needed to obtain 10 accuracy and so used different
numbers of terms for each argument.

(3) Function needed to evaluate factorial. As noted above this is a real*8 function to
ensure that the result does not overflow.

Solution:
The fortran code | used is linked to http://geoweb.mit.edu/~tah/12.010/HW02 01 11.f.

The output of my program is given below.
TAHComputer[288] gfortran HW02 01 11.f -o HWO02 01
TAHComputer[289] HWO02 01

TABLE OF ERROR FUNCTION (ERF) AND FIRST DERIVATIVE

Argument ERF d (ERF) /dx
-3.000 -0.99998 0.00014
-2.750 -0.99990 0.00059
-2.500 -0.99959 0.00218
-2.250 -0.99854 0.00714
-2.000 -0.99532 0.02067
-1.750 -0.98667 0.05277
-1.500 -0.96611 0.11893
-1.250 -0.92290 0.23652
-1.000 -0.84270 0.41511
-0.750 -0.71116 0.64293
-0.500 -0.52050 0.87878
-0.250 -0.27633 1.06001
0.000 0.00000 1.12838
0.250 0.27633 1.06001
0.500 0.52050 0.87878
0.750 0.71116 0.64293
1.000 0.84270 0.41511




1.250 0.92290 0.23652
1.500 0.96611 0.11893
1.750 0.98667 0.05277
2.000 0.99532 0.02067
2.250 0.99854 0.00714
2.500 0.99959 0.00218
2.750 0.99990 0.00059
3.000 0.99998 0.00014

(b) How would you change this program if 10 significant digits were required?
Several changes would be needed to output to 10-signifciant digits.
(1) The format would need to change for the extra digits. In particular F8.5 would
need to be changed to F14.10
(2) The headings format would need to be changed to re-align the columns
(3) In the Erff function itself, the eps variable would be changed to 1.0d-11 to
ensure the 10-digits of precision for the output.
(4) All variables would need to be real*8.

Question (2): (25-points).
Write a program that reads your name in the form <first name> <middle name> <last
name> and outputs the last name first and adds a comma after the name, the first
name, and initial of your middle name with a period after the middle initial. If the names
start with lower case letters, then these should be capitalized. The program should not
be specific to the lengths of your name (ie., the program should work with anyone’s
name.
As an example. An input of
thomas abram herring
would generate:
Herring, Thomas A.
Hints:
Look at the ASCII table and check the relationship between upper and lower case letters
Intrinsic function CHAR and ICHAR convert between character strings and ascii codes and
visa versa.
Reading with a * format will allow three strings to be read on the same line i.e.,

read(* *) string1, string2, string3
will allow all names to be on the one line.
Writing with a format of a single a (instead of a10 for example) will output only the
number of characters in the string to be output. To avoid extra spaces, only print the
number of characters needed using the 1:N feature where N is the number of characters
needed.

Again a nominally easy program but we will clearly need a few utility subroutines to
perform various tasks. From the question, the main ones will be:
(1) A subroutine that will convert a string to upper case. Examination of the ASCII
codes shows that the only difference between upper and lower case is that the



(2)

(3)

upper case symbol for a letter is 32 less than the lower case value. (man ascii on
most systems will print the ASCII table). Therefore by use of ICHAR to get the
ASCIl numeric value and CHAR to convert the ASCII numeric value back to a
character, we can convert from lower to upper case. But we do need to be
careful: Only the characters from a-z should be converted.

Since we need to do other manipulations of strings, we will probably need
something that finds the length of the used portion of a string, i.e., even though
a string may be declared to a certain length only some of the string is filled with
non-blank characters (in class we discussed that fortran pads strings with blanks
if a shorter length string is assigned to a longer string

Since the question calls for re-arranging the names, a routine that extracts
“words” from a string will be useful. An alternative would be to read the parts of
the name into different strings in which case, this routine would not be needed.
This second approach is used in the homework solution.

For items 2 and 3 above, the routines will work by finding the positions in strings of
blank and non-blank characters and using the fortran string(n:m) feature to extract
those parts of the string.

Code design

Ask the user for the string to be converted and read the user input.

Check for IOSTAT errors reading the string

Check that the string given is not of zero-length (lenline function).

Convert to upper case (tocaps subroutine--- this could be implemented as a
function since there is only one return)

Extract each part from it, namely first name, middle initial and last name.
(GetName routine)

Check the lengths of the parts of the names to see if zero length.

If the last name is zero length, then this implies that only two parts of the name
were entered so take the second part of name to be last name and make the
middle initial a question mark since it does not seem to have been entered.

If the last name still seems to be zero length, then assume only one name was
entered and so take this to the last name and use question marks for the first
name and middle initials.

Convert to upper case the first letter of each part of the names (in case no upper
case given by user).

Compute the lengths of each name part and compute the size of banner needed
Output banner and names using the first character only of the middle name.

Routine tocaps( in_string, out_string)
Get the minimum length of string passed (so that we don’t exceed bounds)
Loop over each character in string

If the input character is between ‘@’ and ‘7

Subtract 32 from ASCII code and convert back to character



Endif
End loop
Function lenline(inline)
Returns the length of the used portion (non-blank character) of a string
Get the full length of the string
Start at the end of the string working backwards to find a non-blank character. Make
sure we do not go past the start of the string
Return the number of characters to last non-blank part of the string

Fortran90/gfortran have a len_trim function which returns the length of the non-blank
portion of a string and a function trim which returns the non-blank part of a string (non-
blank is the trailing blanks in the string)

Routine getname(instring, position, nextword)

Extracts the next full word from string starting from position in string. In normal use the
position would start at 1 or less.

Check the position passed into the routine. If it is less than zero (actually a bad call) set

it to zero. If it is greater than or equal to the full length of the string then we are at the

end of the string already, so keep the position at the end of the string and return a blank

string.

Start working up the string looking for the next non-blank character. This marks the

start of the next word. Once this has been found, keep moving up the string to find the

next blank, which will mark the end of the word. In both loops make sure that we don’t

go past the end of the string. Copy the part of the character string corresponding the

next word unless the bounds are such that there is no next word in which case the word

is returned as blank.

The fortran code | used is linked to http://geoweb.mit.edu/~tah/12.010/HW02 02 11.f

TAHComputer[290] gfortran HW02 02 11.f -o HWO02 02
TAHComputer[291] HWO02 02

Enter your names (First, middle, last) James quincy adams
kkkhkkhkkkhkkhkkkhkkkhkhkkkhk*%x

* Adams, James Q. *
khkkhkkkhkhkkhhkkhdhkhdrhdrkkhkkhx

Second method: You will need to enter all 3 names
Enter first, middle and last name james quincy adams
+++++++++++++++++++

+ Adams, James Q. +

+++++++++++++++++++

Question (3): (50-points) Write a Fortran program that will compute the motion of a
bicyclist and the energy used cycling along an oscillating, sloped straight-line path. The
path followed will be expressed as

H(x)=Sx+Asin2ax/A)+ BcosRQax/A)


http://geoweb.mit.edu/~tah/12.010/HW02_02_11.f

where H(x) is the height of the path above the starting height, S is a slope in m/m, A and
B are amplitudes of sinusoidal oscillations in the path. The wavelength of the oscillations
is . The forces acting on the bicycle are:

Wind Drag ~ F; =1/2A,C,oV?

Rolling Drag F, = M,gC,
where A, is the cross-sectional area of the rider, Cy4 is the drag coefficient, r is the density
of air and V is the velocity of the bike. For the rolling drag, M, is the mass of the rider
and bike, g is gravitation acceleration and C, is rolling drag coefficient.

The bicyclist puts power into the bike by pedaling. The force generated by this power is
given by

Rider force F =P /V
where F. is the force produced by the rider, P, is power used by the rider and V is velocity
that the bike is traveling (the force is assumed to act along the velocity vector of the
bike). Your program can assume that the power can be used at different rates along the
path. The energy used will be the integrated power supplied by the rider. Assume that
there is maximum value to the rider force.

Your code should allow for input of the constants above (path and force coefficients).
The program can assume a constant power scenario and constant force at low velocities.

As a test of your program use the following constants to compute:

(a) Time to travel and energy used to travel 10 km along a path specified by
5=0.01, A=5.0 m, B=0.0 m and I= 2km, with constant power use of P, =100Watts
and a maximum force available of 20N.

(b) The position and velocity of the bike tabulated at a 100-second interval.

Assume the following values
Cs=0.9

C,=0.007

A =0.67 m?

p =1.226 kg/m’

g =9.8m/s’

M, = 80 kg

Your answer to this question should include:
(a) The algorithms used and the design of your program
(b) The Fortran program source code (I will compile and run your programs).
(c) The results from the test case above.

With the equations given above, we can compute the forces acting on the bike (gravity,
drag, rolling friction and the rider input force) and using the mass of the bike and rider,
compute accelerations. By integrating the accelerations we generate velocity changes



and by integrating the velocity changes we get position changes. Since the forces
depend on velocity, we need to integrate in small steps. Precisely how small we discuss
below. This problem is basically an integration problem. It can also be posed as the
solution to a second-order differential equation and in later homework (and languages)
we will how to solve it this way.

There are two basic ways of approaching this problem:

(1) Assume that the bike remains attached to the track (roller coaster problem) and
resolve the forces into the direction of the track at the location of the bike and assume
that the force perpendicular to this are balanced and can be neglected. In this solution,
the integration is along the track and because the track description is given as a function
of horizontal distance and that the total distance traveled is the horizontal distance (and
not the distance along the track), the integration will need to keep track of both the
distance along the track and the horizontal distance. For a small change in distance, the
horizontal distance increment is dS cos(theta) where theta is the local slope.

(2) Compute the complete force balance on the bike and solve the equations in two
dimensions. In this mode of solution, the bike does not need to stay on the ground. In
this solution, we need to add gravity acting vertically down, the normal force from the
track surface which largely compensates gravity but because of local slopes will also
have a component that acts in the direction of motion of the bike, and finally because of
the curvature of the track, the centrifugal and centripetal forces need to be considered.
If the force balance is computed correctly and the bike is slow enough that is does not
leave the track, the integration of acceleration and velocity to yield position should trace
out the shape of the track.

Both of the above solutions are given is the solution. In both cases, we also add code
that allows the accuracy of the integrations to be specified.

Since in both solutions above we need integration we should go to the library and read
about numerical integration. Notice that there are two parts to integration problems:
(1) you need to do the integration and (2) the program has to determine the accuracy of
the integration. In particular, if the user requests low accuracy integration, then the
program should run quicker. In reading about numerical integration both methods for
integration and the way of judging accuracy must be determined. You need to know the
techniques well enough to implement in a program.

As discussed in the solution to Homework 1, the basic equation being integrated here
the acceleration of the body. The tricky part of the problem is that the acceleration
depends on the velocity of the body. In the full approach, (2) above, we are solving a
pair of non-linear ordinary differential equations in this problem. We have:

i - k() —e(¥) - f(8) =0

where x is a vector of the x and z coordinates of the object, and the derivatives are with
respect to time. The k term here is drag, c(x) is the centripetal term and f(g) is the
gravity and surface normal forces. In general, the integral above can not be solved
analytically because the functions c and f depend on the track shape.



| consulted Numerical Recipes (for the discussion of numerical integration, not the
programs) and Abramowitch and Stegum. The latter book gives the Runge-Kutta
formula for numerically integrating an equation of the form y”’(x) = f(x,y,y’) where in our
case x is time, y is position, y’ is velocity and y”’ is acceleration.

|
Y=y, +hly, + g(kl +k, + k)] +O(h)

Yo=Y, + é[k1 + 2k, + 2k, + k, ]

ki = hf (x,.9,.5,)

k,=hf(x, +h/2,y, +hy [2+hk 18,y +k/2)
ky=hf(x, +h/2,y, +hy /2+hk /8,y +k,/2)
k,=hf(x, +h,y, +hy +hk,/2,y, +k;)

The equations above give the position (y) and velocity (y’) at time step n+1 in the
numerical integration based on the values at time step n. The length of the time step is
h. The O(h"5) statement means that the error in the integration decreases as step size
to the 5% power. The simple approach to the numerical integration in Euler’s method in
which the acceleration (function f) is computed for the position and velocity at the start
of the step and is assumed constant for the distance traveled and velocity change during
the step. The above equation is an approach (one of many different ones available) in
which the constant acceleration assumption is replaced with accelerations computed at
different points in the time step. A very simple application of this approach is consider
where gravity will be computed. Since the velocity of the body is known at the start of
the step, an approach height at the end of the step can be computed (assuming
constant velocity) and constant value of gravity used could be computed at the mid-
point of the height at the beginning of the step and the approximate position at the end
of the step. Similarly, rather than computing drag using the initial velocity only, the
change in velocity can be estimated and the drag computed using the average velocity
of the drag during the step. The Runge-Kutta equations are derived using these ideas.
The Runge-Kutta integration method allows the trajectory to be computed based in an
initial velocity. Our problem is two-dimensional and in f90 we could implement the
equations above uses two element arrays for y and y’. In f77, we could compute each
component separately, or we could use a technique commonly used in 2D problems.
We can make y and y’ complex data types where the real component is the x-coordinate
and the imaginary component is the z coordinate.

One complication in the integration here is that we are not integrating for a finite length
of time but rather until the x-coordinate reaches a set distance. This is a bit tricky for
the last integration step where the time interval until the objects is not likely to be the
time step being used for the integration. The implementation in the solution is to
integrate until the bike goes just past the end of the distance. Smaller integration step
sizes are made as we approach the end. Based on how far back in time in that last step,



the last step of the integration is done with a smaller step size. The last step is repeated
with smaller step sizes until the bike is within the tolerance of the distance for the
accuracy of the calculation. The energy integration is done with a a 3-point Newton-
Cotes Methods (also called Simpson's rule).

The one-dimensional solution used the same approach except that the horizontal
coordinate needs also the integrated. The integration is built into the Runge-Kutta
integration.

The basic flow of the program is to:

-Read the inputs fro the user. These reads are ordered such that those quantities most
likely to be changed by the user. These values have defaults and so the user only
needs to use /<cr>to adopt the defaults. — Initialize the variables needed in the
program

- Trial integrations with decreasing step sizes to determine the step size needed to hit
the ground within a specific accuracy. In the standard example we try for 10 mm
precision in distance accuracy.

The integration routine is called Int2d for the two-dimensional integration and Intld
for the one-dimensional version. The routine called accel returns the acceleration at
a specific time, position and velocity (position is needed to compute slopes and
surface curvature in Int2d (the latter is needed for centripetal force calculation).
Notice in the 2D version we treat the X and Z coordinates, velocities and
accelerations as complex numbers. This allows the acceleration function to return a
complex result that contains the X and Z acceleration. In the Runge-Kutta integration
equations, | just need one set of expressions that do the complex calculations. (Here
| just need to be careful to only multiply by real values and to add and subtract
complex values.)

- Once the step size is set, run with the final step size and output results. (This later step
is a little inefficient since it repeats an earlier calculation but with output generated
this time. The output of the trajectory lines start with T[ *] and | can use this to
extract using grep the trajectory of the bike.

Out put the final velocity and the trajectory (optional for making plots)

The program in implemented is given in

http://geoweb.mit.edu/~tah/12.010/HW02 03-2D 11.f

for the full two-dimensional calculation and in
http://geoweb.mit.edu/~tah/12.010/HW02 03-1D 11.f

for the alternative formulation that uses the one-dimensional integration. Both
programs also uses an include file

http://geoweb.mit.edu/~tah/12.010/FBike.h

that contains parameters for gravity values, air density etc and a common block that
contains the “fixed:” variables in the program (object mass, drag coefficient etc.)
We also include a



http://geoweb.mit.edu/~tah/12.010/HW02_03-2D_11.f
http://geoweb.mit.edu/~tah/12.010/HW02_03-1D_11.f

http://geoweb.mit.edu/~tah/12.010/HW02_03_11.in file that contains input for the
program. (Using / to respond to the questions asked by the program will also generate
the standard example output.)

Example output for test case:

(HW02_03-2D < HWO02 03 11.in >! HWO02 03_1ll.out can also be used. The run bellow
uses just default values. These are the values stored in HW02_03_11.in)

% gfortran HW02_03-2D 11.f -o HW02_03-2D
% HW02_03-2D

12.010 Program to solve Bike Motion problem
Given track characteristics and rider/bike properties the time, energy and path
are computed

Program Parameter Input. [Defaults are printed use /<cr> to accept default
Length of track (km) and error (mm) [10.000 km 10.0 mm] /

Track Slope, Sin and Cos amplitudes (m) and wavelenghth (km) [Defaults 0.001
5.00m 0.00 m 2.00 km] /

Rider/Bike Mass (kg), Area (m**2), Drag and rolling Coefficient ,[ 80.00 kg,
0.670 m"2, 0.90 and 0.0070] /

Rider Power (W) and max force (N) [100.00 Watts, 20.00 N] /

Output interval, zero for none (default 100.00 s) /

+H++ A

PROGRAM PARAMETERS

+H+++H+ A+

Length of track 10.000 (km) and error 10.0 (mm)

Track Slope 0.001 Sin and Cos amplitudes 5.00 0.00 (m) and wavelenghth 2.00
(km)

Rider/Bike Mass 80.00(kg), Area 0.670 (m**2),Drag and rolling Coefficient
0.90 0.0070

Rider Power 100.00 (Watts) and max force 20.00 (N)

+H++++++ A

Step size 0.100E+01 s, Times 2255.1473 2255.1669 s Error 195.74 mm
Step size 0.500E+00 s, Times 2255.1669 2255.1728 s Error 58.73 mm
Step size 0.250E+00 s, Times 2255.1728 2255.1739 s Error 11.37 mm
Step size 0.125E+00 s, Times 2255.1739 2255.1741 s Error 2.50 mm
o* Time X_pos Z_pos X_vel Z_vel Energy

o* (sec) (m) (m) (m/s) (m/s) (Joules)

o 0.000 0.0000 0.0000 0.0000 0.0000 0.00
(e] 100.000 79.9901 1.3233 1.4887 0.0241 1600.02
o 200.000 306.7628 4.4134 3.3670 0.0335 6135.90
o 300.000 826.7974 3.4153 6.7976 -0.0846 15409.05
o 400.000 1513.8127 -3.4814 5.8770 0.0099 25409.05
(e] 500.000 1951.6809 1.1956 2.9595 0.0489 33914.45
(e] 600.000 2202.4203 5.1719 2.6542 0.0362 38929.87
o 700.000 2608.5166 7.3207 5.8297 -0.0248 46841.18
(e] 800.000 3292.8975 -0.6856 6.8882 -0.0586 56841.18
o 900.000 3834.8273 1.3551 3.8825 0.0568 66456.49
(e] 1000.000 4117.3686 5.9193 2.3535 0.0368 72108.05
o 1100.000 4428.1180 9.3010 4.5333 0.0205 78323.45
o 1200.000 5046.5582 4.3178 7.2497 -0.1054 88273.31
o 1300.000 5681.6964 1.4743 4.9737 0.0472 98273.04
o 1400.000 6035.2522 6.5876 2.4808 0.0412 105344.91
o 1500.000 6294.1703 10.2844 3.3205 0.0347 110523.81
o 1600.000 6803.7014 9.6952 6.7144 -0.0793 119705.43
(o] 1700.000 7493.5363 2.4943 5.9865 0.0041 129705.43
o 1800.000 7941.4394 7.0264 3.0334 0.0499 138347.80
o 1900.000 8193.4336 11.0479 2.6045 0.0362 143388.33
o 2000.000 8588.7675 13.3952 5.7249 -0.0190 151137.56
0] 2100.000 9269.2214 5.5265 6.9632 -0.0656 161137.56
0] 2200.000 9821.3690 7.1600 3.9921 0.0571 170825.51

10



(e] 2255.174 10000.0004 9.9995 2.6501 0.0443 174398.59
Time to travel 10.000 km, 2255.17 seconds, 0.63 hrs

Rider Energy 174398.59 Joules, 41654.387 Calories

Potential 7839.61 Kinetic 281.00 Joules

Final Velocity 2.650 0.044 m/sec

Results for Test case:

Program Time Energy used
2-D 2255.17 seconds 174407.94 Joules
1-D 2255.06 seconds 174407.62 Joules

Plot below shows results from program. To get the time series of the values use a 1-

second output can grep on lines starting with ‘0’ as shown below:
% HW02 03-2D < HW02 03 1l.in | grep '"O | awk '{print substr($0,3)}' >! 2d.dat

Figure 1: X and Z velocities of bike as a function of time. The X velocity for the 2-D
solution the shown with yellow dots and from the 1-D solution with a black line. Notice
that Z velocity is multiplied by 50 because this velocity is much smaller than the X
velocity.
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Figure 2: Top: Path followed by bike computed by integrating accelerations (Height (m)),
yellow dots, and analytic solution (black). Bottom: the difference between the
theoretical path and this path shown on the right hand scale. The differences are <1
mm. and arise from accumulated rounding error.
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