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Problem set 9: Ocean Circulation 

Due date: December 5th, 2008 

1. Use Sverdrup theory and the idea that only	 western boundary currents are 
allowed, to sketch the pattern of ocean currents you would expect to observe 
in the basin sketched in the figure below in which there is an island. Assume a 
wind pattern of the form sketched in the figure. 

Figure 1: The figure depicts an ocean basin with an island in the middle. North is 
up and West is right. The wind pattern blowing on the ocean is sketched on the left 
of the figure. 

2. In class we showed that the wind-driven ocean circulation can be inferred from 
knowledge of the surface wind stress. A shortcoming of the derivation is that 
it did not predict the emergence of western boundary currents; the theory only 
applied to the broad flows in the gyre interior. Henry Stommel, a star in the 
field of oceanography, showed that the emergence of western boundary currents 
can be predicted, if one accounts for bottom friction. You are here given the 
opportunity of becoming a star yourself and repeat Stommel’s reasoning. 

Consider an ocean in a rectangular domain 0 ≤ y ≤ L, 0  ≤ x ≤ W of constant 
depth H filled with water of constant density, i.e. ρ = ρref = const. The ocean 
dynamics at large scales in such an ocean is governed by the equations, 
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Assume that at the ocean surface τ (x) = −τ0 cos(πy/L) and τ (y) = 0, while at 
the bottom τ = −rU , where r is the friction coefficient and U is the vertically 
integrated horizontal velocity. The addition of a bottom stress is the only 
addition to the Sverdrup’s problem described in class. It will turn out to be 
crucial to allow western boundary currents. 

(a) Subtract the y-derivative of (1) from the x-derivative of (2). This is the 
equation for the ocean vorticity ζ = ∂yv − ∂xu. 

(b) Calculate the vertical integral of the vorticity equation. You will need to 
use the expression for the surface and bottom stresses here. 

(c) Using the continuity equation, show that the vertically integrated velocity 
field is divergenceless, i.e. ∂xU + ∂yV = 0.  

(d) A divergenceless velocity field can always be expressed in terms of a stream-
function ψ such that (U, V ) = (−∂yψ, ∂xψ). Show that the vertical integral 
of the vorticity equation can be expressed as an equation for the stream-
function ψ: 
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(e) Verify that the solution of the equation for ψ is:
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Check also that ψ vanishes at x = 0 and x = W . Why is this important? 

(f) Make contour plots of ψ for two different values for r = 10−6s−1 (weak 
bottom friction) and r = 10−4s−1 (strong bottom friction). What is the 
maximum value of ψ in each case? Do you see a western boundary current 
in the two solutions? How does it depend on r? [For this exercise use 
τ0 = 0.1N m−2 , L = 6, 000km, W = 10, 000km.] 

(g) Make contour plots of the dissipation term r∂2ψ/∂x2 + r∂2ψ/∂x2 for the 
two values of r. Where is the dissipation largest? What term balances 
dissipation in the vorticity equation (5) in each case? 

3. The figure below shows the distribution of salinity in the Indian Ocean along 
80◦E from India to Antarctica. On the figure, draw the mid-line of at least one 
water mass, and sketch the possible flow of water in the core as indicated by 
the distribution of salinity. 
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Figure 2: Distribution of salinity in the Indian Ocean along 80◦E. 
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